
Generative Text Steganography Based on LSTM Network and
Attention Mechanism with Keywords
Huixian Kang†, Hanzhou Wu†,‡,∗ and Xinpeng Zhang†,‡,∗

†School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
‡Shanghai Institute for Advanced Communication and Data Science, Shanghai 200444, China
∗Email: h.wu.phd@ieee.org, xzhang@shu.edu.cn

Abstract
The widespread use of text over online social networks makes

it quite suitable for steganography. Conventional text steganogra-
phy usually transmits the secret data by either slightly modifying
the given text or hiding the secret data through synonym replace-
ment. The rapid development of deep neural networks (DNNs)
has led automatically generating the steganographic text to be-
come an important and promising topic. This has motivated us to
propose a novel generative text steganographic method based on
long short-term memory (LSTM) network in this paper. We apply
attention mechanism with keywords to the LSTM network to gen-
erate the steganographic text. Experiments show that, compared
to the related work, the steganographic text generated by the pro-
posed method is of higher semantic quality and more capable of
resisting against steganalysis, which has shown the superiority.

Introduction
As a means to secret communication, steganography allows

us to hide a secret message into an innocent object typically called
cover without arousing suspicion from the channel monitor. The
steganographic model can be briefly reviewed as follows. A data
hider uses a key to drive a well-designed embedding procedure to
hide a message into the cover without significantly distorting the
cover. The resulting object called stego will be sent to a receiver
via an insecure channel such as Internet. If the channel attacker
captures the stego and obtains evidence of steganography, he can
take action to interrupt the communication and even track the data
sender or receiver, meaning that, the steganographic communica-
tion is failed. Otherwise, once the receiver receives the stego, he
uses the key to fully extract the embedded data.

A straightforward idea to categorize steganographic methods
is based on the type of used cover. Digital image is the most pop-
ular among all kinds of covers since images are widely distributed
over the Internet and easy to be altered for steganography. Audio,
video and text are also of increasing attention to the researchers.
Recently, there are some approaches [1], [2], reported in the liter-
ature that use social behaviors to convey a secret payload. Though
many general steganographic algorithms can be applied to differ-
ent covers, there should be unique treatment associated with each
type of cover source since a particular cover always has its own
statistical, perceptual and structural characteristics.

Compared with other carriers, the advantage of the text car-
rier for steganography is its extensiveness and high liquidity in
daily social interactions. When the transmission process is dis-
turbed by noise, text is relatively easier to be corrected in terms
of semantic analysis. However, the higher degree of information

coding of texts makes it not easy to embed extra information into
texts, leading text steganography to be a quite challenging topic.

Conventional text steganographic methods could be rough-
ly divided into format based and content based. Format based
methods such as [3], [4], [5], [6], are usually visually difficult to
detect. However, as they are sensitive to the cover format, it may
lead to poor anti-interference ability. Content based methods [7],
[8], [9], often hide the secret data by synonym substitution, mis-
spelling, or other techniques. The steganographic text obtained by
this type of method is not limited by the format and therefore has
relatively stronger anti-interference ability. A drawback is that, it
may expose distinguishable difference in statistical characteristics
compared with the ordinary text, and steganalysis tools, e.g., [10],
may detect steganographic text easily. In addition, the capacity of
steganography by cover modification is usually low.

With the development of natural language processing (NLP)
technology in recent years, researchers have started to study auto-
matically generating steganographic text to convey a secret pay-
load. Such kind of steganographic method belongs to the category
that steganography without intuitive modification of the cover. It
works by generating the steganographic text based on the to-be-
embedded data during the process of text generation. Compared
with previous works, this type of steganographic method usually
has higher embedding capacity and stronger anti-interference a-
bility, and is therefore becoming a promising topic. There have
been some methods proposed in past years, e.g., [11], [12], [13],
[14], [15], [16]. Recently, Yang et al. [17] present a method gen-
erating the steganographic text based on recurrent neural network-
s (RNNs). In the work, they use a large-scale text database and
LSTM to construct a language model. In order to generate a sen-
tence, the conditional probability distribution of each word is en-
coded by a binary tree or Huffman tree, to realize secret informa-
tion hiding. However, their model ignores the semantic relevance
between sentences, which may make the generated steganograph-
ic text easily arouse suspicion, which has motivated us to present
a new text steganographic method to achieve better trade-off be-
tween text-semantic quality, embedding capacity and efficiency.

We propose to use long short-term memory (LSTM) network
combined with attention mechanism based on a large-scale ordi-
nary text database to construct a language model. Moreover, key-
words are taken into account for the attention mechanism. During
generating the steganographic text, the present word to be gen-
erated is determined according to the conditional probability dis-
tribution (of words) calculated by LSTM network and the secret
value to be embedded. A receiver is able to retrieve the secret
data without error from the steganographic text by using the iden-

tical language model to the sender. Experiments have shown that,
in terms of context-semantic relevance, the proposed work signifi-
cantly outperforms the related work. To well present our work, we
organize this paper as follows. We first introduce preliminary con-
cepts. We then detail the proposed generative text steganography,
followed by experiments for performance evaluation. Finally, we
conclude this paper and provide discussion.

Preliminaries
In this section, we present brief introduction about generative

text steganography, LSTM network, and attention mechanism.

Generative Text Steganography
Compared with conventional text steganography, generative

text steganography does not need a pre-specified cover (text) ob-
ject, instead, it directly produces the steganographic text accord-
ing to the secret data and a trained generative model. A text can
be represented by a sequence of ordered words. We can denote
the ordered word sequence by S = {ωi}n

i=1, where ωi represents
the i-th word of the sentence. For most automatic text generation
approaches, the word at the i-th position of the sentence can be
associated with the conditional probability distribution based on
all previous words (if any), leading the entire text to be expressed
as the product of n conditional probabilities, which is written as:

Prob(S) = Prob(ω1,ω2, ...,ωn)

=
n

∏
i=1

Prob(ωi|ωi−1,ωi−2, ...,ω1).
(1)

It is required that Prob(S) should be kept as high as possible,
and Prob(S) = 1 ideally. A straightforward idea to automatically
generate S is that, given ω1, we produce a set of candidate words
for ω2, denoted by C(ω2). All elements in C(ω2) are mapped to
an integer in such a way that we can always set the value of ω2 as
an element in C(ω2) that its mapped value matches the secret da-
ta and maximizes Prob(ω2|ω1). Prob(ω2|ω1) can be determined
based on a local training dataset. The similar process will be ap-
plied to the subsequent symbols in S one by one. Mathematically,
an element in C(ωi) is selected as the value of ωi to match the
present secret data and maximize Prob(ωi|ωi−1), which, actually,
assumes that Prob(ωi|ωi−1,ωi−2, ...,ω1) = Prob(ωi|ωi−1).

Regardless of the resulting semantic quality of applying the
simple method mentioned above, it requires us to design such kind
of word-wise generative steganographic procedure that two core
issues should be addressed for generating the present word ωi: 1)
Collect a list of candidate words prior to word generation, where
each candidate is associated with a probability indicating the de-
gree of “fitness” of selecting it as the present word to be generated.
2) Map each candidate to an integer such that one can always find
a word from the list that its mapped value matches the secret data.

Accordingly, we need to use an effective statistical genera-
tive model for candidate-word generation, where the words can
be sorted by their associated probabilities. The sum of the proba-
bilities equals 1, and the “most appropriate” word has the largest
probability value. On the other hand, we have to build the map-
ping relationship between the secret data and a word. In this pa-
per, for the former, we use the LSTM network combined with at-
tention mechanism and keywords to generate the candidate words.
And, for the latter, we use the methods in [17] for simplicity.

LSTM Network
LSTM [18] has been widely used in sequence problems due

to its ability to capture long-term dependence. A LSTM network
unit can be described in the following set of formulas:

It = σ(Wi[ht−1,xt]+bi),

Ft = σ(W f [ht−1,xt]+b f),

Ct = FtCt−1 + It tanh(WC[ht−1,xt]+bc),

Ot = σ(Wo[ht−1,ot]+bo),

ht = Ot tanh(Ct),

yt = fy(Wyht +by),

(2)

where xt , ht and yt indicate the input vector, hidden vector, and
output vector at the t-th step. W∗ and b∗ are to-be-learned matri-
ces and biases. It corresponds to the input gate, which control-
s whether the new information needs to be stored or not in the
memory cell. Ft indicates the forget gate, controlling whether the
stored information needs to be thrown away. Ct means the mem-
ory cell, which is controlled by the input gate and the forget gate.
The output gate Ot controls whether the current hidden state needs
to be influenced by the memory cell. We need to be aware of that
when we calculate the output at time step t, the input we used
contains all the information from the beginning. Using formula to
more intuitively indicate the output yt at time step t:

yt = f (xt |xt−1,xt−2, ...,x1), (3)

we can find that the formula is extremely similar to Eq. (1). This is
why LSTM can be used for generative text steganography, which,
actually, is a sequence task. For more details, we refer to [18].

Attention Mechanism
Attention mechanism [19], [20], [21], has been a quite pop-

ular and useful technique in deep learning in recent years. It
can be used for performance improvement in many fields such
as natural language processing, computer vision, speech process-
ing, and so on. For example, Bahdanau et al. [20] first applied
attention mechanism to neural machine translation (NMT), by us-
ing a typical Encoder-to-Decoder framework. Suppose that, the
source language is represented as S = {ω1,ω2, ...,ωN}, where ωk
is the k-th word. In the traditional framework without attention
mechanism, each ωk is encoded into a hidden vector hk using the
Encoder, and all hidden vectors (h1,h2, ...,hN) are linearly trans-
formed to get a context vector ci, which is further decoded into
the i-th target word yi using the Decoder together with previously
generated target words. All produced target words form the target
language T = {y1,y2, ...,yM}. During the target-word generation,
by combining the attention mechanism to the Encoder-to-Decoder
framework, better translation results can be obtained since the at-
tention mechanism allows the model to automatically search rel-
evant context from the source sentence out for better prediction.

The aforementioned attention mechanism takes into accoun-
t all hidden vectors (h1,h2, ...,hN) of the Encoder during deter-
mining ci. In detail, ci is determined according to the weighted
average of (h1,h2, ...,hN) and the attention weights {ai, j|1 ≤ i ≤
M,1≤ j ≤ N}. ai, j is computed with the current hidden vector of
the target word, denoted by zi, and hidden vectors (h1,h2, ...,hN).

Figure 1. Sketch for the proposed steganographic method.

The entire process can be briefly described by the formula below:

ci =
N

∑
j=1

ai, jh j, (4)

where

ai, j = align(zi−1,h j) =
exp(score(zi−1,h j))

∑k score(zi−1,hk))
(5)

and score(zi−1,h j) is a function that scores how well the inputs
around the position j and the output at the position i match [20],
[21]. As the attention mechanism can automatically notice words
in the source language during the process of decoding the context
vector to target language, we apply it to automatically generate
the steganographic text expecting to produce long text sentences
having high sematic quality, which would be quite helpful for con-
cealing the presence of hidden data, and having high capacity.

Proposed Method
In this section, we introduce the proposed method in detail.

Figure 1 shows the sketch for the proposed method. It can be seen
that, the secret message is first encrypted as a random bitstream.
By feeding the random bitstream and keywords to the LSTM with
attention mechanism (denoted by the block “Attn LSTM”), the
steganographic text can be generated, which will be sent to the
receiver via an insecure channel. With the steganographic text,
a receiver is able to reconstruct the random bitstream with the
identical neural network model and keywords, which allows the
receiver to further reconstruct the secret message without error by
decryption. In this way, the secret communication is realized.

LSTM Network with Attention Mechanism
A core work for the proposed method is to combine the atten-

tion mechanism into the LSTM network to generate long stegano-
graphic text having high sematic quality. Figure 2 shows the struc-
tural information of the functional block “Attn LSTM”. The block
has the form of a chain of repeating modules of LSTM unit. For
each LSTM unit, it receives the hidden vector of the previous L-
STM unit and the word vector of previously generated word. The
new hidden vector will be used for word prediction together with
keywords, and also fed to the next LSTM unit for subsequent pro-
cessing. Obviously, the attention mechanism involves the hidden
vector and keywords. We take the t-th LSTM unit for example.
Figure 3 shows the structural information of the word prediction
module. It can be described as follows. First of all, we determine
the attention vector attnt as:

attnt =Wattn[k1;k2; ...;knk]+battn, (6)

Figure 2. The structural information of the functional block “Attn LSTM”.

where k j is the j-th keyword vector, nk is the total number of key-
words, and Wattn and battn are parameters to be optimized during
training. [k1;k2; ...;knk] means that, we construct a new vector by
concatenating all the nk vectors. Then, we determine a new vector
depending on attnt and ht as:

h′t = [attnt ;ht]. (7)

By using linear transform, we further obtain

outputt =Wdech′t +bdec, (8)

where Wdec and bdec are to be optimized, finally resulting in

Prob(yt |y<t) = softmax(outputt). (9)

Data Embedding and Extraction
Assuming that, we are now processing the t-th LSTM unit

and expecting to embed an integer d ≥ 0. It can be seen from Eq.
(9) that, we can collect a set of candidate words. The candidates
can be sorted in a decreasing order according to their probabili-
ties. The (d +1)-th word will be selected as the generated word.
Thereafter, by processing the subsequent LSTM units with the
similar way, we can produce the stego text. Obviously, there are
many ways to generate an integer d to be embedded, e.g., directly
converting a bitstream with a fixed length to a decimal number.
The way to generate an integer is not the main interest of this pa-
per. For simplicity, we will use the methods introduced in [17],
i.e., fixed-length coding (FLC) and variable-length coding (VLC),
for experiments in this paper. However, it is pointed that, one can
design other effective methods to build the mapping relationship
between the secret bitstream and the candidate words.

The trained neural network block (i.e., “Attn LSTM”) shown
in Figure 1 and keywords should be pre-shared between the sender
and the receiver so that the secret data can be fully reconstructed.
The reconstruction process can be performed in an inverse way to
the sender side, which is straightforward.

Remark 1. Unlike previous works, we take into account the
keywords for text generation. The first generated word by using
the proposed method could also carry the secret data.

Remark 2. It is possible that, two candidate words have the
identical prediction probability. In order to ensure that the sender
and the receiver produce the identical sorted word list, when two
words have the identical prediction probability, the lexicographi-
cally smaller word can be associated with a smaller index.

Remark 3. Multiple stego texts will be separately generated
if the secret data needs to be split to multiple pieces. Every stego
text uses a different set of keywords.

Figure 3. The structural information of the word prediction module.

Table 1. Details of the training datasets.

Dataset ZhiHu ESSAY

Total number of distinct tokens 97616 238905

Total number of distinct paragraphs 56621 494944

Average length of a paragraph 77.81 64.28

Experimental Results and Analysis
We present experimental results and analysis in this section.

Setup
Since we expect the proposed method to automatically gen-

erate the steganographic text that is sufficiently similar to ordinary
text, we need a large-scale dataset of natural text to train our lan-
guage model so as to mimic/capture the statistical characteristics
of natural text. Moreover, the proposed method exploits keywords
for generating text with high-level quality, requiring us to prepare
datasets providing keyword summary. To this end, according to
our best effort, we select two most suitable datasets for model
training, i.e., ZhiHu and ESSAY [22]. The statistical information
of the two datasets are given in Table 1. For ZhiHu, we use 50,000
paragraphs for training, and the rest for evaluation. For ESSAY,
we use 490,000 for training, and the rest for evaluation.

For simulation, we use Word2Vec in [23] to obtain word vec-
tors, whose dimensions are all 100. However, it is always free for
us to apply other effective algorithms to obtain the word vectors.
The recurrent hidden layer of one-layer LSTM model contain-
s 256 hidden units, namely, the dimension of hidden vector hi
shown in Figure 2 is 256. The attention layer contains 100 hidden
units, namely, the dimension of “attnt” shown in Figure 3 is 100.
The model is trained with the Adam optimizer [24] and dropout
mechanism [25]. The learning rate is initialized as 0.001. The
batch size is set as 16 and dropout rate is 0.5. In our experiments,
5 keywords are used for attention mechanism. Each keyword has
a dimension of 100 (by Word2Vec).

Data Embedding Efficiency
We use PyTorch 1.0.11 as the simulation platform. And, TI-

TAN RTX 24GB GPU x1 and CUDA 10.0 are used for accelerated
computing. We use ZhiHu dataset for experiments. We have spen-
t around five days to obtain a trained model. We use the running

1https://pytorch.org/

Table 2. Running time (seconds) of generating steganographic
text for different models at different data embedding rates.

Data Embedding Rate LSTM Model

(bits per word, bpw) FLC VLC

1 3.766±0.097 3.767±0.106

2 3.819±0.089 5.094±0.134

3 3.872±0.071 6.978±0.198

4 3.891±0.082 9.058±0.146

5 4.064±0.514 11.959±0.329

Data Embedding Rate Attn LSTM Model

(bits per word, bpw) FLC VLC

1 3.687±0.104 3.832±0.324

2 3.693±0.079 5.353±0.262

3 3.747±0.177 6.783±0.224

4 3.760±0.090 8.769±0.519

5 3.770±0.079 11.648±0.300

time of generating the steganographic text with a trained model
to represent the data embedding efficiency. And, we use the av-
erage number of embedded bits per word (bpw) to represent the
data embedding rate. For each data embedding rate, we generate
500 steganographic texts (each containing 100 words) and record
the running time. We use the FLC method and VLC method in-
troduced by [17] to build the replacement relationship between
the secret bitstream and the word candidates. We evaluated the
data embedding efficiency for the LSTM model and Attn LSTM
model. Table 2 shows the results. It is noted that, the only differ-
ence between LSTM and Attn LSTM is that, LSTM does not use
attention mechanism. It can be seen from Table 2 that, for both
models, the time to generating the steganographic text, average-
ly, is almost the same, meaning that, the Attn LSTM model will
not significantly increase the computational cost once the training
phase has been finished. Besides, as the data embedding rate in-
creases, the VLC method takes more time than the FLC method.
The reason is that, the VLC method takes more time to build a
Huffman tree than to build a binary tree, which is used in the FLC
method. In this comparison, we can see that the average time
the FLC method (used by Attn LSTM model) takes to generate a
100-word steganographic text is around 3.7 seconds, which shows
good performance in data embedding efficiency.

Statistical Quality Analysis and Steganalysis
We use perplexity, which is a standard metric for sentence

quality testing, to measure how well the automatically-generated
steganographic text. The perplexity is defined as follows [17]:

PL = 2−
1
n ·logProb(ω1,ω2,...,ωn), (10)

where {ωi}n
i=1 represents the generated steganographic text. In

most cases, a smaller PL indicates better quality of the generated
steganographic text. We apply the FLC method and VLC method
to our Attn LSTM model and compare it with the corresponding
LSTM model. We train each model on two datasets mentioned

Table 3. The mean and standard deviation of PL for different models at different data embedding rates.

Used Data Embedding Rate LSTM Model Attn LSTM Model

Dataset (bpw) FLC VLC FLC VLC

1 4.852±1.125 7.245±1.984 3.948±1.349 5.234±1.888

2 8.763±3.814 8.162±1.560 7.146±2.333 6.543±1.942

ZhiHu 3 11.091±6.326 9.659±2.963 10.799±5.585 7.803±1.576

4 18.872±7.146 11.464±2.559 16.664±7.979 8.164±2.791

5 24.358±9.557 12.791±2.950 23.270±8.893 8.077±2.894

1 5.157±0.939 8.168±0.355 4.756±0.209 6.209±0.295

2 10.482±1.581 9.137±0.479 8.181±1.081 7.415±0.689

ESSAY 3 14.564±5.152 12.694±1.214 12.061±2.098 8.877±1.414

4 33.181±7.489 14.406±1.680 29.954±7.232 10.607±1.580

5 55.231±12.569 17.991±2.125 54.769±12.755 12.989±2.725

Table 4. EMD for different models at different embedding rates.

Used Rate LSTM Model Attn LSTM Model

Dataset (bpw) FLC VLC FLC VLC

1 10.513 9.655 8.888 8.864

2 10.937 10.257 9.287 9.351

ZhiHu 3 11.359 10.887 9.953 9.881

4 11.568 11.428 10.903 10.241

5 12.014 11.783 11.977 10.326

1 11.822 11.252 8.629 8.549

2 11.911 11.351 9.031 8.677

ESSAY 3 11.912 11.361 9.381 9.256

4 12.290 11.549 10.429 9.900

5 12.594 11.644 10.604 10.275

above, and for each embedding rate, we generate 500 stegano-
graphic texts for evaluation. The mean and standard deviation of
the perplexity are determined, which are shown in Table 3.

According to Table 3, we can draw out the following con-
clusions. First of all, for each dataset, as the embedding rate in-
creases, the perplexity will gradually increase. Secondly, with the
increase of the embedding rate, the quality of the text obtained
by the FLC method drops sharply, the quality of the text obtained
by the VLC method slowly decreases. Thirdly, the perplexity of
the text obtained by the Attn LSTM model is lower than the text
generated by the LSTM model, which has demonstrated the supe-
riority of the Attn LSTM model.

We further compare the overall statistical distribution simi-
larity between the steganographic text generated by each method
and the real text (a total of 500 pairs). We first use Doc2Vec [26]
to map the steganographic text to a high-dimensional space. Then,
we use Earth Mover’s Distance (EMD) [27] to measure the simi-
larity of the steganographic text and the real text. The results are
shown in Table 4. From Table 4, we can get the similar conclu-
sion, that is, the EMD between the steganographic text generated
by the Attn LSTM model and the real text is smaller, indicating

Table 5. Steganalysis results for different models at different
embedding rates.

Used Rate LSTM Model Attn LSTM Model

Dataset (bpw) FLC VLC FLC VLC

1 0.553 0.443 0.460 0.457

2 0.357 0.413 0.393 0.473

ZhiHu 3 0.650 0.590 0.580 0.537

4 0.633 0.617 0.623 0.600

5 0.747 0.663 0.693 0.660

1 0.531 0.477 0.520 0.503

2 0.587 0.520 0.567 0.517

ESSAY 3 0.663 0.557 0.577 0.547

4 0.677 0.601 0.630 0.556

5 0.703 0.660 0.672 0.601

that Attn LSTM can generate the more real-like text than LSTM.
In addition, we use the steganalysis algorithm [28] based on

Bayesian Estimation and Correlation Coefficient methodologies
to evaluate the proposed work based on the 500 pairs of texts. We
determine various statistical indicators for the generated stegano-
graphic texts, and then get the average detection accuracy of dif-
ferent statistical indicators. Table 5 records the average detection
accuracy for different datasets at different data embedding rates.
The closer the average detection accuracy is to 0.5, the superior
the steganographic method is. Here, the detection accuracy [17] is
defined as the ratio between the total number of correctly classi-
fied samples and the total number of all test samples. From Table
5, we can conclude that, the steganographic text generated by the
Attn LSTM model is more semantically relevant and therefore
more resistant to steganalysis. In applications, it is difficult for an
attacker to access the trained model, enhancing the security.

Steganographic Examples
The above experimental results are based on statistical anal-

ysis. For fair evaluation, we further show some examples of the

Figure 4. Steganographic examples for the proposed method.

steganographic texts, which have been shown in Figure 4. Since
the used datasets were based on Chinese, we used Google Trans-
lator2 and Youdao Translator3 to translate Chinese to English for
non-Chinese readers. We did not translate Chinese to English by
ourselves since we thought it may be not fair due to the subjec-
tive bias. Notice that, the used machine translators may not well
translate Chinese to English. It is seen that, overall, the proposed
work can generate the steganographic text with clear semantic in-
formation, showing the applicability. We point that, the semantic
quality of steganographic text is dependent of the training dataset.

2https://translate.google.com/
3http://fanyi.youdao.com/

If the dataset is not large-scale, the semantic quality will be poor.

Conclusion and Discussion
In this paper, we propose a novel text steganography method

based on LSTM network and attention mechanism with keyword-
s, which can auto-generate high-quality and diverse steganograph-
ic text. We have conducted experiments to evaluate the proposed
method, and experimental results show that it outperforms related
work, which has demonstrated the superiority. With the fast devel-
opment of online social networking services, moving steganog-
raphy to social networking environment would be quite suitable.
Obviously, text steganography is promising for this scenario since
texts are widely used over the social networks, making such covert

communication be easily concealed by the huge number of nor-
mal social activities. Moreover, automatically generating stegano-
graphic text further allows us to achieve intelligent steganograph-
ic communication over social networks by developing stegano-
graphic bots (agents). We believe that, text steganography would
become more and more important. In the future, we will combine
automatic text steganography into social network environments.

Acknowledgement
It was supported by National Natural Science Foundation

of China under grant numbers 61902235, U1636206, U1936214,
and 61525203. It was also supported by “Chen Guang” project
co-funded by the Shanghai Municipal Education Commission and
Shanghai Education Development Foundation.

References
[1] H. Wu, W. Wang, J. Dong, and H. Wang. New graph-theoretic ap-

proach to social steganography. In: Proc. IS&T Electronic Imaging,
Media Watermarking, Security and Forensics, pp. 539-1-539-7(7),
San Francisco, CA, Jan. 2019.

[2] X. Zhang. Behavior steganography in social network. In: Proc. Ad-
vances in Intelligent Information Hiding and Multimedia Signal
Processing. pp. 21-23, Kaohsiung, Taiwan, Nov. 2016.

[3] J. T. Brassil, S, Low, N. F. Maxemchuk, and L. O’Gorman. Elec-
tronic marking and identification techniques to discourage docu-
ment copying. IEEE Journal on Selected Areas in Communication-
s, vol. 13, no. 8, pp. 1495-1504, Oct. 1995.

[4] K. Rabah. Steganography - the art of hiding data. Information Tech-
nology Journal, vol. 3, no. 3, pp. 245-269, Mar. 2004.

[5] S. Low, N. Maxemchuk, and A. Lapone. Document identification
for copyright protection using centroid detection. IEEE Transac-
tions on Communications, vol. 46, no. 3, pp. 372-383, Mar. 1998.

[6] W. Bender, D. Gruhl, N. Morimoto, and A. Lu. Techniques for data
hiding. IBM Systems Journal, vol. 35, no. 3.4, pp. 313-336, 1996.

[7] H. Hu, X. Zuo, W. Zhang, and N. Yu. Adaptive text steganography
by exploring statistical and linguistical distortion. In: Proc. IEEE
Second International Conference on Data Science in Cyberspace,
pp. 145-150, Jun. 2017.

[8] Y. Liu, X. Sun, C. Gan, and H. Wang. An efficient linguistic
steganography for Chinese text. In: Proc. IEEE International Con-
ference on Multimedia and Expo, pp. 2094-2097, Aug. 2007.

[9] M. Topkara, U. Topkara, and M. J. Atallah. Information hiding
through errors: a confusing approach. In: Proc. SPIE, Security,
Steganography, and Watermarking of Multimedia Contents IX, vol.
6505, pp. 321-332, Feb. 2007.

[10] L. Xiang, X. Sun, G. Luo, and B. Ma. Linguistic steganalysis using
the features derived from synonym frequency. Multimedia Tools
and Applications, vol. 71, no. 3, pp. 1893-1911, Aug. 2014.

[11] W. Dai, Y. Yu, Y. Dai, and B. Deng. Text steganography system
using markov chain source model and DES algorithm. Journal of

Software, vol. 5, no. 7, pp. 785-792, Jul. 2010.
[12] H. Moraldo. An approach for text steganography based on markov

chains. arXiv Preprint arXiv:1409.0915, 15 pages, Sept. 2014.
[13] T. Fang, M. Jaggi, and K. Argyraki. Generating steganographic tex-

t with LSTMs. arXiv Preprint arXiv:1705.10742, 7 pages, May
2017.

[14] Y. Tong, Y. Liu, J. Wang, and G. Xin. Text steganography on RNN-
generated lyrics. Mathematical Biosciences and Engineering, vol.
16, no. 5, pp. 5451-5463, Jun. 2019.

[15] F. Dai, and Z. Cai. Towards near-imperceptible steganographic tex-
t. arXiv Preprint arXiv:1907.06679, 7 pages, Jul. 2019.

[16] Z. Ziegler, Y. Deng, and A. Rush. Neural linguistic steganography.
arXiv Preprint arXiv:1909.01496, 9 pages, Sept. 2019.

[17] Z. Yang, X. Guo, Z. Chen, Y. Huang, and Y. Zhang. RNN-Stega:
linguistic steganography based on recurrent neural networks. IEEE
Transactions on Information Forensics and Security, vol. 14, no. 5,
pp. 1280-1295, Sept. 2018.

[18] S. Hochreiter, and J. Schmidhuber. Long short-term memory. Neu-
ral Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

[19] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent
models of visual attention. In: Proc. Advances in Neural Informa-
tion Processing Systems (NIPS), pp. 2204-2212, Dec. 2014.

[20] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine transla-
tion by jointly learning to align and translate. arXiv Preprint arX-
iv:1409.0473, 15 pages, Sept. 2014.

[21] M. Luong, H. Pham, and C. Manning. Effective approaches to
attention-based neural machine translation. arXiv Preprint arX-
iv:1508.04025, 11 pages, Aug. 2015.

[22] X. Feng, M. Liu, J. Liu, B. Qin, Y. Sun, and T. Liu. Topic-to-essay
generation with neural networks. In: Proc. International Joint Con-
ference on Artificial Intelligence, pp. 4078-4084, Jul. 2018.

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estima-
tion of word representations in vector space. arXiv Preprint arX-
iv:1301.3781v3, 12 pages, Sept. 2013.

[24] D. P. Kingma, and J. Ba. Adam: A method for stochastic optimiza-
tion. arXiv Preprint arXiv:1412.6980v9, 15 pages, Jan. 2017.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929-1958, Jan. 2014.

[26] Q. V. Le, and T. Mikolov. Distributed representations of sentences
and documents. arXiv Preprint arXiv:1405.4053v2, 9 pages, May
2014.

[27] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance
as a metric for image retrieval. International Journal of Computer
Vision, vol. 40, no. 2, pp. 99-121, Nov. 2000.

[28] S. Samanta, S. Dutta, and G. Sanyal. A real time text steganalysis
by using statistical method. In: Proc. IEEE International Confer-
ence on Engineering and Technology, pp. 264-268, Mar. 2016.

