
New Graph-Theoretic Approach to Social Steganography
Hanzhou Wu†∗, Wei Wang†, Jing Dong†, Hongxia Wang‡

†Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
‡College of Cybersecurity, Sichuan University, Chengdu 610065, China
∗h.wu.phd@ieee.org

Abstract
In this paper, we introduce a new and novel graph-theoretic

steganographic approach applicable to online social networking
services (SNSs). The proposed approach translates a secret mes-
sage to be embedded as an undirected graph called message-
graph, the structural information of which is concealed within
a new directed graph. The new directed graph is released in a
SNS platform by producing a sequence of ordered multiple-user
interaction events. To secure communication, we propose to split
a specific vertex to multiple copies and insert new vertices and
edges to the directed graph. A receiver is able to reconstruct the
directed graph from observations. Both the message-graph and
the secret message can be orderly retrieved without error. It is
probably the first work deeply focusing on the practical design of
interaction based steganography using graph-theoretic approach.

Introduction
People are experiencing the many advantages and conve-

nience of the Internet technologies and services, among which
the social networking service (SNS) has become more and more
popular nowadays due to its openness, interaction and timeliness
[1, 2]. A SNS platform such as Facebook1, Twitter2, and Sina
Weibo3, is an Internet-based social application that allows people
to build social networks, relationships or links with other people
who are willing to share similar interests and daily-life activities
by releasing posts involving multimedia data. Moreover, a SNS
platform enables people to easily comment, forward, and vote oth-
ers’ sharing, which has greatly enriched our spiritual life.

The variety of stand-alone and built-in SNSs also provide us
new access to realizing steganography [3]. Typically, steganogra-
phy aims to hide a secret message in a digital cover such as im-
age by slightly modifying the noise-like component of the cover.
The resulting object called stego will not introduce any notice-
able artifacts and will be sent to a legal receiver who can perfectly
reconstruct the embedded data according to the shared key. As
a means to secure communication, different from cryptography,
steganography even conceals the presence of communication.

A number of media based steganographic algorithms have
been introduced in past years such as F5 [4], MB [5], StegHide
[6], LSBM [7], MME [8], YASS [9], HUGO [10], UNIWARD
[11], UED [12], WOW [13], HILL [14], and so on. By ana-
lyzing these state-of-the-arts, two commonly-used principles for
designing steganographic systems can be obtained [15]. One is
model-preserving steganography in which the encoder aims to p-

1https://www.facebook.com/
2https://twitter.com/
3https://weibo.com/

reserve the selected model of the cover source during data em-
bedding, e.g., [5], [6]. The other one treats steganography as a
rate-distortion optimization task [16]. For a required payload, it
is expected to reduce the introduced distortion as low as possi-
ble, believing that, a minimized distortion always corresponds to
a high security level where a well-designed distortion measure is
required to resist against steganalysis approaches [17, 18, 19, 20].

Massive media data with different characteristics are widely
distributed over SNSs, some of which also provide personalized
media-editing APIs for users. It allows the steganographic com-
munication to be easily covered by different normal operations or
behaviors, resulting in many false positives from the viewpoint
of steganalysis. We believe that a part of conventional advanced
media-based steganographic algorithms can be applied to SNSs,
which, by making adjustments accordingly, should overcome the
possible lossy operations of SNS platforms such as compression.
Namely, robustness should be considered when to use steganog-
raphy over SNSs, which is not the main interest of this paper.

Steganography within a media file permits hiding a limited
amount of data per one file, and, from an attacker’s view, the mod-
ified file may be accessible for steganalysis experts [21]. Instead
of using a media file, steganography can be also realized by social
interactions. Interaction-level steganography hides a message by
creating an abstract graph pattern [22] based on user interactions
in SNS platforms. The existence of communication can be eas-
ily concealed and removed by the steganographer, e.g., one can
delete his/her own comments, cancel “Likes” or other erasable
actions. If all abnormal user interactions are not captured, there is
little information for steganalysis experts to analyze. As a result,
steganography by interactions is more difficult to detect and even
eliminate for steganalysis experts. This motivates us to study in-
teraction based steganography (defined as social steganography).

There has no doubt that the essence of steganography is com-
munication, which modulates a state X to another state Y by a spe-
cific rule and a shared key. For steganography, we usually have
Y = Emb(X ,M,K) and M = Ext(Y,K) where K is the secret key
and M for the secret message. In media steganography, both X
and Y are media files such as digital images. Different from me-
dia steganography, social steganography uses user interactions (or
say behaviors). In this case, one can consider both X and Y as a
social network, which can be represented by a graph that consist-
s of vertices, edges and other necessary information. Generally,
the vertices represent users, and the edges reveal the social inter-
actions between users. Even though X and Y can represent the
social network corresponding to a whole SNS platform, there has
no such need since we usually only focus on such users involving
the present social steganography. Unlike media steganography,
social steganography corresponds to a time-varying system since

SNS platforms are always updating no matter whether steganog-
raphy is taking place or not.

Assuming that, we have an initialized social network S0 (ig-
noring its detailed form), we can record a sequence of social net-
works {S0,S1, ...,SN} as time goes by. One may simply think that
St is corresponding to time t ∈ [0,N]. A social steganographic
scheme A requires us to pick two indexes 0 ≤ a < b ≤ N out
such that X = Sa and Y = Sb. The data embedding procedure for
A corresponds to a sequence of key-controlled user interactions
within time [a,b− 1], which enables Sa to become Sb. For a re-
ceiver, according to the shared key, he should be able to identify
interaction events and reconstruct an abstract graph from these
observations. The structural information of the abstract graph re-
veals the true secret message. Thus, for social steganography, we
have M = Ext(Sa,Sa+1, ...,Sb,K) since interactions are identified
from difference between adjacent networks. Notice that, due to
the openness, a desired receiver should be always able to observe
the necessary information of events involving steganography.

Based on the above perspective, we will present a graph the-
ory based social steganographic approach below. The structure is
organized as follows. We first present the proposed basic stegano-
graphic framework. Then, we analyze the basic framework from
aspects of capacity, complexity and security. Thereafter, we intro-
duce graph-modification techniques for securing steganographic
communication. We also show an example for practical use. Fi-
nally, we conclude this paper and provide some new perspectives
and further research directions.

Basic Social Steganographic Framework
We will use graph theory. A graph G(V,E) consists of V and

E, where V = {v1,v2, ...,vn} is the vertex set (or node set), and
E = {e1,e2, ...,em} is the edge set. ∀e∈ E, we can write e= (u,v)
where u ∈ V and v ∈ V . G(V,E) is either directed or undirected.
A directed graph is a graph that the edges have a direction associ-
ated with them. An undirected graph is a graph that all edges have
no orientation, i.e., (u,v) ∈ E is equivalent to (v,u) ∈ E. A sub-
graph of a graph G(V,E) is another graph G′(V ′,E ′) formed from
a subset of the vertices and edges of G(V,E), namely, V ′ ⊂V and
E ′ ⊂ E. ∀e′ = (u′,v′) ∈ E ′, we have u′ ∈V ′,v′ ∈V ′.

The basic framework mainly includes message-graph gener-
ation, message-graph embedding and message-graph reconstruc-
tion. The first step translates a message as an undirected graph.
The second step is to construct a new directed graph that con-
ceals the topological information of the message-graph. The new
directed graph can be then released as a form of multiple-user
interaction-events in a SNS platform. The third step enables a re-
ceiver to reconstruct the message-graph from observations, which
allows the secret message to be fully recovered.

Message-Graph Generation
Let m = [m1m2m3...ml] ⊂ {0,1}l be a secret message. We

convert m to an undirected message-graph G0(V0,E0), ensuring
that, given G0(V0,E0), one can reconstruct m without error. The
length of m, i.e., l, can be “self-contained”. Namely, given any
bit-string started from m, one can split m out. This can be done
by inserting auxiliary data to m.

Given n vertices indexed from 1 to n, 2(
n
2) different graphs

can be constructed. Each graph can represent a bit-string with a
length of

(n
2
)
. When the length of m is smaller than

(n
2
)
, one can

Figure 1. An example of translating a bit-string as an undirected graph.

always append “0”s to m to constitute a bit-string with a length
exactly equal to

(n
2
)
. For simplicity, we assume that l =

(n
2
)
, i.e.,

n = (
√

8l +1+1)/2. It is straightforward to construct G0(V0,E0)
for m. In detail, we first initialize V0 = {v1,v2, ...,vn} and E0 = /0.
Then, for every mz ∈ m, if mz = 0, no operation is performed.
Otherwise, we update E0 as E0 = E0 ∪{(vx,vy)}, where x and y
are determined as:

x = min { j | 1≤ j ≤ n−1,
j

∑
i=1

(n− i)≥ z}, (1)

and

y = x+ z−
x−1

∑
i=1

(n− i). (2)

Fig. 1 shows an example, where m = [1011010011], l = 10,
n = 5. Since m1 = 1, we find x = 1 and y = 2, indicating that
there is an edge between v1 and v2. As m9 = 1, we find x = 3
and y = 5, meaning that, (v3,v5) should be inserted. For those
bits with value “0”, though an index-pair can be determined with
Eqs. (1, 2), no edge will be inserted. Given the message-graph,
one can reconstruct m as well. In detail, for each 1 ≤ z ≤ l, we
can determine two indexes x and y with Eqs. (1, 2). If there
exists (vx,vy), then we have mz = 1, otherwise, we specify mz = 0.
We still take Fig. 1 for explanation. Suppose that z = 8, we can
obtain x = 3 and y = 4. As (v3,v4) does not exist, we therefore
have m8 = 0. Notice that, the number of edges always equals the
Hamming weight of m, i.e., m = |E0|= ∑

l
i=1 mi.

Message-Graph Embedding
We will construct a new directed graph G1(V1,E1) conceal-

ing G0(V0,E0). If we ignore the directions of edges in G1, G0 will
be a subgraph of G1. We denote V0 and E0 by V0 = {v1,v2, ...,vn}
and E0 = {e1,e2, ...,em}. And, we write V1 = {v′1,v′2, ...,v′n′} and
E1 = {e′1,e′2, ...,e′m′}, where n′ = n + 1 and m′ > m. It is al-
so assumed that v1 = v′1, v2 = v′2, ..., vn = v′n, i.e., V0 ⊂ V1 and
V1 \V0 = {v′n′}= {v

′
n+1}.

Assuming that, both G0(V0,E0) and V1 are known, we are to
determine E1. The edges in E1 are associated with a direction. An
edge (v′i,v

′
j) ∈ E1 indicates a direction from v′i to v′j. And, (v′j,v

′
i)

corresponds to a direction from v′j to v′i. We will generate E1
by orderly processing {v1,v2, ...,vn}. In detail, we first initialize

Figure 2. An example of constructing G1(V1,E1) based on G0(V0,E0).

E1 = /0, and for each vi ∈ V0 (1 ≤ i ≤ n), we perform one of the
following two operations to update E1.

OP 1. If ∃ j < i, (v j,vi) ∈ E0, then, ∀ j < i, if (v j,vi) ∈ E0,
we insert (v′i,v

′
j) to E1.

OP 2. If @ j < i, (v j,vi) ∈ E0, we insert (v′i,v
′
n+1) to E1.

In this way, we can generate G1(V1,E1). Fig. 2 shows an
example, where n = 7,m = 6,n′ = 8. With G0, we first process
v1 with OP 2, i.e., (v′1,v

′
8) is inserted to E1. Then, we process

v2 with OP 1, resulting in the insertion of (v′2,v
′
1). OP 2 will

be performed for v3, which adds (v′3,v
′
8) to E1. The subsequent

procedure is straightforward. Fig. 2 has shown the final G1. If
we ignore the directions of E1, G0 will be a subgraph of G1. In
addition, it is observed from Fig. 2 that, each directed edge in E1
can be associated with an index value that represents the time of
inserting it into E1. For example, (v′1,v

′
8) is associated with “1”

since it is the first edge adding to E1. (v′7,v
′
3) has a value of “9”,

meaning that it is the 9-th edge adding to E1.
G1 will be released in a selected SNS platform by creating a

sequence of user interactions, which are orderly produced accord-
ing to the associated index-values of the edges in E1. Namely, the
interaction corresponding to an edge with a smaller index will
happen prior to that with a larger index. The interaction opera-
tions are not unique and actually depend on the used SNS plat-
form. For example, a user may produce the interaction event by
forwarding, commenting or “liking” another user’s micro-blog.
This indicates that, it is relatively free for us to choose the types
of interaction events.

A necessary requirement is that, for each directed edge in
E1, the corresponding interaction event is produced by the start-
ing vertex of the edge. For any directed edge (v′i,v

′
j), the starting

vertex is v′i. For example, for (v′1,v
′
8) shown in Fig. 2, the interac-

tion event will be produced by v′1. The goal of such requirement
is to ensure that, a legal receiver can identify the corresponding
vertex-index of a user account. Notice that, when to release G1 in
a SNS platform, each vertex in G1 corresponds to a user account.

Message-Graph Reconstruction
A legal receiver reconstructs G1 before reconstructing G0.

A steganographer should have previously created a set U , where
|U | ≥ n′. U is only shared between the steganographer and the
receiver. In other words, the steganographer actually selects n′

users in U to constitute V1. The interactions between n′ users re-
veal E1. Since the interactions are orderly produced, the receiver
can construct a directed graph G2(V2,E2) from observations. Let
(ai,bi,ci) (1 ≤ i ≤ m′) denote the orderly observed interactions.

Here, ai and bi represent two users. ci is the interaction opera-
tion. ai is the producer of ci. In order to construct G2(V2,E2), we
perform the following steps:

Step 1. Set V2 = /0, E2 = /0, i = j = 1, perform Step 2.
Step 2. If i > m′, perform Step 5; otherwise, go to Step 3.
Step 3. If ai has not been processed previously, we then map

ai to a vertex denoted by v′j and set j = j+1; otherwise, ai must
have been previously mapped to a vertex. If bi has not been pro-
cessed previously, we then map bi to a vertex denoted by v′n′ ; oth-
erwise, bi must have been previously mapped to a vertex. Notice
that, n′ can be easily obtained by determining the total number of
different users from observations. We then perform Step 4.

Step 4. Let v′x and v′y be the mapped vertices of ai and bi, re-
spectively. We update V2 =V2∪{v′x,v′y}, and E2 =E2∪{(v′x,v′y)}.
Mark the user accounts ai and bi as processed. Set i = i+ 1 and
perform Step 2. It does not matter if an account has been previ-
ously marked as processed.

Step 5. Collect G2(V2,E2) and terminate the procedure.
We write V2 = V1 and E2 = E1, i.e., G2 is equivalent to G1.

We remove v′n′ and all edges involving v′n′ from G2. By ignoring
the directions of edges, we can obtain G0, from which we can
extract the secret message. Notice that, to collect (ai,bi,ci) (1 ≤
i≤ m′), users in U \V1 should not take actions at the same time.

Capacity, Complexity and Security
The embedding capacity for the basic framework depends on

the size of G0(V0,E0). Given n, a total of
(n

2
)

bits can be conveyed
in a SNS platform, resulting in an embedding rate of 0.5 · (n−1)
bits per vertex (bpv), which is significantly larger than most tra-
ditional media based steganography from the viewpoint of cover-
element utilization.

The computational complexity to construct G0 is O(l). We
have m ≈ l/2 if m has been encrypted. When to construct G1,
v′n+1 will be connected by at most n edges. Thus, the computa-
tional complexity of constructing G1 is O(m+n). The complexity
to obtain G0 from G1 will be O(n) since we only need remove v′n′
and involved edges. Obviously, to extract m, we have to check the
existence of each edge, resulting in a complexity of O(1

2 n2− 1
2 n).

m should be encrypted prior to translation. A steganalysis
expert may detect the existence of G1 and even reconstruct G1.
Simply releasing G1 probably allows an attacker to successfully
reconstruct G0, G1 and m. The reason is that, G1 corresponds to
a connected graph if we ignore the orientations of edges. If the
steganalysis expert has found a vertex in G1, he can collect all ver-
tices having a path to the found vertex. All collected vertices in-
cluding the found vertex constitute V1. The interactions reveal E1.
Accordingly, the expert could reconstruct G1, G0 and m. Here, it
is assumed that, the attacker has collected (ai,bi,ci), i ∈ [1,m′],
which may be a strong assumption.

As mentioned above, m = ∑
l
i=1 mi ≈ l

2 , which may cause
suspicion of an analyzer. Therefore, to secure the steganographic
communication, we may not directly release G1 in a SNS platfor-
m, but rather modify G1 in a way that an attacker will not find G1
easily. Meanwhile, the release of modified G1 should guarantee
that a receiver can extract G0 and m. We deal with it below.

Secure and Erasable Graph Modifications
We propose to combine three methods to modify G1 to deal

with the security problem mentioned above, i.e.,

Figure 3. Examples of applying M 1, M 2, and M 3 to G1: (a) v′8 is split to three copies (v′8,v
′
9,v
′
10), (b) two edges (v′2,v

′
7) and (v′4,v

′
5) are inserted, (c) two vertices

(v′11,v
′
12) and involved edges are inserted.

M 1. Split v′n′ to multiple vertices.
M 2. Insert key-controlled directed edges to G1.
M 3. Add invalid vertices and edges.
M 1 makes G1 relatively sparse, i.e., the ratio between the

number of existing edges in G1 and the maximum possible num-
ber of edges is reduced. Such sparse operation reduces the degree
of the original v′n′ . It also increases the difficulty to determine the
raw G1. When to split v′n′ , the head vertices of all the involved
directed edges are randomly re-selected from the newly inserted
vertices, which can be done by modifying OP 2 as follows.

Modified OP 2. Let Vs denote the set of split vertices of
v′n+1. If @ j < i, (v j,vi)∈ E0, we insert (v′i,v

′
r) to E1, where v′r ∈Vs

is randomly selected according to a key (notice that, the receiver
does not know this key).

We take Fig. 3 (a) (based on Fig. 2) for better explanation.
We split v′8 to three new vertices {v′8,v′9,v′10}, and then modify
the edges (v′1,v

′
8), (v

′
3,v
′
8), (v

′
5,v
′
8) shown in Fig. 2 as (v′1,v

′
8),

(v′3,v
′
9), (v

′
5,v
′
9) shown in Fig. 3 (a), respectively. It is observed

that, though we have added a new vertex v′10, no edge is assigned
to v′10, which does not affect the reconstruction of G0 as v′10 /∈G0.

It is not explicit currently that whether the sparsity due to the
split operation exposes significant steganalysis features or not. It
inspires us to insert key-controlled directed edges to G1, i.e., M 2,
to control the sparsity. Previously, we construct G1 by orderly
processing vertices in V0. During the processing, either OP 1 or
OP 2 is performed. It is observed that, OP 1 always links a ver-
tex to another one that has a smaller index value, e.g., as shown
in Fig. 2, the head vertices of all black edges have a smaller index
value than the corresponding tail vertices. This property enables
a receiver to identify the corresponding vertex-indexes of user ac-
counts from observations and finally recover G0 without any error.
It can be therefore inferred that, a necessary requirement of using
M 2 is that a receiver should be able to remove the inserted edges
so as to recover G0 without error. This is can be done by only
simply modifying OP 1 as follows:

Modified OP 1. If ∃ j < i, (v j,vi) ∈ E0, then, ∀ j < i, if
(v j,vi)∈E0, we insert (v′i,v

′
j) to E1. Thereafter, for each j ∈ (i,n],

we use a seed to generate a bit value wk ∈ {0,1} (it may be not
evenly distributed), we insert (v′i,v

′
j) to E1 if wk = 1. (The receiv-

er does not know the seed and the bit-generation algorithm.)
Therefore, by replacing OP 1 with Modified OP 1, we can

achieve M 2. The correctness relies on the property that the in-

dexes of head vertices of all edges (except for those involve v′n′)
in the original G1 are less than the tail vertices. In this way, at the
decoding side, one can easily identify the newly inserted edges
due to Modified OP 1 as the newly inserted edges meet that, the
indexes of head vertices of all edges in the modified G1 are larger
than the tail vertices. Fig. 3 (b) shows an example using M 2. It is
straightforward to reconstruct the original G1 from the modified
G1 due to M 2 based on above property. Notice that, when to use
M 2, the message-graph reconstruction procedure is not the same
as the basic framework. We show the corresponding reconstruc-
tion procedure in the end of this section.

One may further insert invalid vertices and edges to enhance
security. This is quite different from M 1 and M 2. It requires a
steganographer to build a new vertex set R that has no intersection
with U , i.e., R∩U = /0. However, unlike U , for the steganogra-
pher, there has no need to share R with a receiver since R does
not carry useful information for data decoding. The goal of R is
to enhance the difficulty of reconstructing G0 for an attacker. It is
easily inferred that, when G1 is modified by M 3, the way to re-
construct the original G1 from the modified G1 is straightforward.
In detail, with the modified G1 due to M 3, the receiver can obtain
the original G1 by just removing those vertices not in U as well as
the edges involving those removed vertices.

Accordingly, by combining the above three methods, we can
construct a new graph which is more complex than the original
G1, e.g., Fig. 3 (c). A necessary requirement is to ensure that G0
can be perfectly recovered, meaning that, the above graph modi-
fications should be erasable. Let G3 denote the resulting directed
graph by applying M 1, M 2 and M 3. With G0, R and Vs, we
perform below steps on G0 to generate G3(V3,E3).

Step 1. For each vertex vi ∈ V0 (1 ≤ i ≤ n), perform either
Modified OP 1 or Modified OP 2 according to G0. We can there-
fore generate a modified G1 due to M 1 and M 2.

Step 2. Randomly insert a certain number of edges (u,v) to
the modified G1, where u ∈V1,v ∈ R or u ∈ R,v ∈V1. The result-
ing new graph will constitute G3.

Once G3 is released in a SNS platform, a receiver needs to
reconstruct G0. The reconstruction steps are:

Step 1. Set V0 = /0, E0 = /0, i = j = 1, perform Step 2.
Step 2. If i > |E3|, perform Step 5; otherwise, we are to per-

form Step 3. Notice that, |E3| can be determined by the receiver.
Step 3. If ai /∈U or bi /∈U (note that, Vs ⊂U), set i = i+1

Figure 4. A simple example for the proposed steganographic approach using M 1, M 2 and M 3.

and perform Step 2. Otherwise, if ai has not been processed, we
map ai to v j and set j = j+1. We then perform Step 4.

Step 4. Let vx be the mapped vertex of ai. We update V0 =
V0 ∪ {vx}. We also update E0 = E0 ∪ {(vx,vy)} if bi has been
previously mapped to vy and y < x. Mark ai as processed. Set
i = i+ 1 and perform Step 2. Notice that, when bi has not been
previously mapped to a vertex, we will not update E0.

Step 5. Collect G0(V0,E0) and terminate the procedure.
Accordingly, we have successfully applied M 1, M 2 and

M 3 to G1 (or say G0), and also recover G0 without error.

Simple and Intuitive Example
We here show a simple example for practical use. We will

not take the real SNS platforms such as Facebook and Twitter for
explanation, but use notations to demonstrate the steganograph-
ic mechanism due to its simplicity and generality. Suppose that,
we have U = {Alice,Bob,Calvin,Dan,Edison,Fisher,Gates} as
well as m = [101001]. The steganographer first randomly choos-
es {Bob,Calvin,Edison,Gates} as the vertices of G0 and orderly
maps them to {v1,v2,v3,v4}. Notice that, the mapping between
the users and the vertices is not shared between the steganogra-
pher and a receiver, but rather is determined by the receiver from
observations. Fig. 4 (a) shows the message-graph, which can be
easily obtained by the message-graph generation algorithm.

We are to embed such graph pattern by user interactions. At
first, Bob produces an interaction to Alice, as shown in Fig. 4
(b). It is pointed that, both Alice and Fisher are chosen to con-
stitute Vs. Then, as shown in Fig. 4 (c), for Calvin, he first pro-
duces an interaction to Bob to carry a message bit, and, then pro-
duces an interaction to Gates, which is corresponding to M 2.
Thereafter, Edison produces an event to Fisher since there has no
edge between v3 and {v1,v2}. Notice that, Fisher is randomly
chosen from the split set {Alice,Fisher}. Going on, Gates gen-

erates two different events indexed by 5 and 6, respectively, as
shown in Fig. 4 (e). Finally, two events (7,Edison 7→ Zena) and
(8,Zena 7→Gates) are produced, which correspond to M 3. Thus,
we have embedded m into the social network, i.e., Fig. 4 (f).

At the receiver side, we should recover G0 from Fig. 4 (f).
We orderly process the interactions according to their indexes.
Initially, we have V0 = /0 and E0 = /0. At first, for Bob 7→ Alice,
we map Bob to v1 and update V0 = {v1}. Then, for Calvin 7→ Bob,
we map Calvin to v2 and update V0 = {v1,v2}, E0 = {(v1,v2)}.
We skip “Calvin 7→Gates” since Gates has not been mapped. For
Edison 7→ Fisher, we will map Edison to v3 and update V0 =
{v1,v2,v3}. Then, for Gates 7→ Edison, we map Gates to v4 and
update V0 = {v1,v2,v3,v4}, E0 = {(v1,v2),(v3,v4)}. Thereafter,
for Gates 7→ Bob, we update E0 = {(v1,v2),(v3,v4),(v1,v4)}. S-
ince Zena does not belong to U , no operation will be performed
for interactions 7 and 8. Accordingly, we have reconstructed G0,
where V0 = {v1,v2,v3,v4} and E0 = {(v1,v2),(v3,v4),(v1,v4)},
from which we can determine m = [101001].

Remark 1. We perform M 3 after G0 has been concealed.
Actually, M 3 can be performed at any time since either the cor-
responding head vertices or the tail vertices are not in U , which
can be easily identified and then skipped by the receiver.

Remark 2. Though the receiver knows U , he/she does not
know V0 initially, which can be determined from observations.

Remark 3. For the Modified OP 1, Modified OP 2, and M
3, the steganographer should hold some keys for producing us-
er interactions. However, all these keys (having been mentioned
above) are unknown to the receiver.

Remark 4. In Fig. 4, the edge Gates 7→Edison has a smaller
index than Gates 7→Bob. Actually, it is also allowed that Gates 7→
Bob has a smaller index than Gates 7→ Edison.

Remark 5. In application scenarios, the usable types of user
interactions could be predetermined by the sender and receiver.

Conclusion, Discussion and Future Works
The main idea of proposed work is to embed a graph pat-

tern (carrying a secret payload) into a SNS platform by producing
user interactions. Different from many traditional algorithms, a
specific media file is not necessary (though the interactions may
involve media data). To secure communication, we propose three
kinds of graph modification techniques to make the graph to be
released complex, which would significantly increase the recon-
struction difficulty for a steganalysis expert. The data embedding
capacity is proportional to the number of vertices of the message-
graph. The proposed work is a general framework, which can be
extended to steganography using other social behaviors.

Traditional media based steganographic algorithms focus on
minimizing the impact due to data embedding, which requires us
to well model the cover/stego. In other words, the state-of-the-arts
actually pay heavily attention to the security of media content (to
resist against content-aware steganalysis). For social steganogra-
phy, more attentions should be paid to security of social behaviors
(interactions) [23]. Indeed, the social behaviors may also involve
media data. In this case, we probably use media-based stegano-
graphic algorithms as an assistant means. On the other hand, so-
cial steganography corresponds to a time-varying (network) sys-
tem. From the viewpoint of social network, we should guarantee
that the social steganographic activities do not cause suspicion by
the network monitor. It means that, the steganographic activities
should follow statistical characteristics of normal social activities.

From the point of graph theory, social steganography inserts
a secret graph pattern (called message-graph) into another open
social network (called cover network), resulting in a seemingly-
normal social network (called stego network). For a steganaly-
sis expert, two directions could be investigated. One is to reveal
the existence of message-graph from a social network, for which
Markov analysis and complex network analysis may be function-
al. Data mining in graphs [22, 24] can be desirable as well. An-
other one is to extract the hidden message-graph, which would be
quite challenging. In addition, unlike media steganography, social
steganography accepts multiple steganographers, i.e., a stego net-
work may contain multiple different message-graphs. It probably
leads us to new directions of steganography in the future.

Acknowledgment
It was partly supported by National Natural Science Founda-

tion of China under grant No. U1536110, 61502496, U1536120,
U1636201, U1736119 and 61772529, and the National Key Re-
search and Development Program of China under the grant No.
2016YFB1001003. It was also partly supported by the Key Lab
of Information Network Security and the Ministry of Public Se-
curity of China.

References
[1] D. M. Boyd, and N. B. Ellison. Social network sites: definition, histo-

ry, and scholarship. Journal of Computer-mediated Communication,
13(1): 210-230, 2007.

[2] B. Chang, T. Xu, Q. Liu, and E. Chen. Study on information diffusion
analysis in social networks and its applications. International Journal
of Automation and Computing, 15(4): 377-401, 2018.

[3] J. Fridrich. Steganography in digital media: principles, algorithms,
and applications. Cambridge University Press, 2009.

[4] A. Westfeld. F5: A steganographic algorithm. In: Proc. International
Workshop on Information Hiding, pp. 289-302, 2001.

[5] P. Sallee. Model-based steganography. In: Proc. International Work-
shop on Information Hiding, pp. 154-167, 2003.

[6] S. Hetzl, and P. Mutzel. A graph-theoretic approach to steganography.
In: IFIP International Conference on Communications and Multime-
dia Security, pp. 119-128, 2005.

[7] J. Mielikainen. LSB matching revisited. IEEE Signal Processing Let-
ters, 13(5): 285-287, 2006.

[8] Y. Kim, Z. Duric, and D. Richards. Modified matrix encoding tech-
nique for minimal distortion steganography. In: Proc. International
Workshop on Information Hiding, pp. 314-327, 2007.

[9] K. Solanki, A. Sarkar, and B. S. Manjunath. YASS: Yet another
steganographic scheme that resists blind steganalysis. In: Proc. In-
ternational Workshop on Information Hiding, pp. 16-31, 2007.

[10] T. Pevny, T. Filler, and P. Bas. Using high-dimensional image mod-
els to perform highly undetectable steganography. In: Proc. Interna-
tional Workshop on Information Hiding, pp. 161-177, 2010.

[11] V. Holub, J. Fridrich, and T. Denemark. Universal distortion func-
tion for steganography in an arbitrary domain. In: EURASIP Journal
on Information Security, 2014:1-13, 2014.

[12] L. Guo, J. Ni, and Y. Shi. An efficient JPEG steganographic scheme
using uniform embedding. In: Proc. International Workshop on In-
formation Forensics and Security, pp. 169-174, 2012.

[13] V. Holub, and J. Fridrich. Designing steganographic distortion using
directional filters. In: Proc. IEEE International Workshop on Infor-
mation Forensics and Security, pp. 234-239, 2012.

[14] B. Li, M. Wang, J. Huang, and X. Li. A new cost function for spatial
image steganography. In: Proc. IEEE International Conference on
Image Processing, pp. 4206-4210, 2014.

[15] T. Filler, and J. Fridrich. Gibbs construction in steganography. IEEE
Transactions on Information Forensics and Security, 5(4): 705-720,
2010.

[16] T. Filler, J. Judas, and J. Fridrich. Minimizing additive distortion in
steganography using syndrome-trellis codes. IEEE Transactions on
Information Forensics and Security, 6(3): 920-935, 2011.

[17] Y. Shi, C. Chen, and W. Chen. A markov process based approach
to effective attacking JPEG steganography. In: Proc. International
Workshop on Information Hiding, pp. 249-264, 2006.

[18] J. Fridrich, and J. Kodovsky. Rich models for steganalysis of digital
images. IEEE Transactions on Information Forensics and Security,
7(3): 868-882, 2011.

[19] G. Xu, H. Wu, and Y. Shi. Structural design of convolutional neu-
ral networks for steganalysis. IEEE Signal Processing Letters, 23(5):
708-712, 2016.

[20] G. Xu, H. Wu, and Y. Shi. Ensemble of CNNs for steganalysis: an
empirical study. In: Proc. ACM Workshop on Information Hiding and
Multimedia Security, pp. 103-107, 2016.

[21] W. Mazurczyk, and K. Szczypiorski. Trends in steganography. Com-
munications of the ACM, 57(3): 86-95, 2014.

[22] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou
r3579x?: anonymized social networks, hidden patterns, and structural
steganography. In: Proc. ACM International Conference on World
Wide Web, pp. 181-190, 2007.

[23] H. Wu, W. Wang, J. Dong, Y. Xiong, and H. Wang. A graph-
theoretic model to steganography on social networks. Preprint arX-
iv:1712.03621, Online Available, 2018.

[24] T. Washio, and H. Motoda. State of the art of graph-based data min-
ing. Proc. ACM SIGKDD Explorations Newsletter, 5(1): 59-68, 2003.

