
Reducing Invertible Embedding Distortion Using Graph Match-
ing Model
Hanzhou Wu†,‡ and Xinpeng Zhang†,‡

†School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
‡Shanghai Institute for Advanced Communication and Data Science, Shanghai 200444, China
Email: h.wu.phd@ieee.org (Corresponding author), xzhang@shu.edu.cn

Abstract
Invertible embedding allows the original cover and embed-

ded data to be perfectly reconstructed. Conventional methods use
a well-designed predictor and fully exploit the carrier character-
istics. Due to the diversity, it is actually hard to accurately model
arbitrary covers, which limits the practical use of methods relying
heavily on content characteristics. It has motivated us to revis-
it invertible embedding operations and propose a general graph
matching model to generalize them and further reduce the em-
bedding distortion. In the model, the rate-distortion optimization
task of invertible embedding is derived as a weighted bipartite
graph matching problem. In the bipartite graph, the nodes rep-
resent the values of cover elements, and the edges indicate the
candidate modifications. Each edge is associated with a weight
indicating the corresponding embedding distortion for the con-
nected nodes. By solving the minimum weight maximum match-
ing problem, we can find the optimal embedding strategy under
the constraint. Since the proposed work is a general model, it can
be incorporated into existing works to improve their performance,
or used for designing new invertible embedding systems. We in-
corporate the proposed work into a part of state-of-the-arts, and
experiments show that it significantly improves the rate-distortion
performance. To the best knowledge of the authors, it is probably
the first work studying rate-distortion optimization of invertible
embedding from the perspective of graph matching model.

Introduction
Information hiding is an emerging and interdisciplinary field

involving different applications, among which digital watermark-
ing and steganography [1] are the most popular. In particular, the
ease of tampering and distribution of digital products has led dig-
ital watermarking to a major activity in digital media processing.
In terms of embedding strategy, information hiding could be or-
ganized into two categories, i.e., non-invertible embedding and
invertible embedding. Though both modify the cover without in-
troducing significant distortion, the former permanently distorts
the cover whereas the latter allows the original cover to be re-
stored after the embedded data was extracted.

Invertible embedding, also called reversible data hiding [2],
reversible watermarking [3], enables media objects to be authen-
ticated and restored to their original versions, making them quite
suitable for sensitive purposes, e.g., the US army is interested in
such kind of technology for authentication of reconnaissance im-
ages1. We investigate fragile invertible embedding, meaning that,

1https://en.wikipedia.org/wiki/Digital_watermarking

when the marked object was tampered, one will find it is not au-
thentic. Invertible embedding approaches can be evaluated by the
rate-distortion behavior. Namely, for a payload, it is required to
reduce the distortion as much as possible. In other words, we hope
to embed as many message bits as possible for a fixed distortion.

A number of invertible embedding algorithms have been de-
veloped in the past years such as lossless compression (LC) [4],
difference expansion (DE) [5], and histogram shifting (HS) [2].
It could be said to a certain extent that, to achieve superior rate-
distortion performance, current state-of-the-arts are based on pre-
diction errors (PEs) and HS (or its variants), e.g., [3], [6], [7],
[8]. Though LC and DE intuitively are different from HS during
data embedding, both can be considered as a variant of HS. In de-
tail, after the cover elements were losslessly compressed, the data
embedding procedure in the reserved (empty) space can be con-
sidered as shifting between “0” and “1”. And, the DE operation
can be considered as “jump” between different values, e.g., d can
be jumped (shifted) to either 2d or 2d +1 to carry a message bit.
Therefore, by building analytic models for HS, we may be able
to extend them to LC and DE. And, it can be inferred that, the
HS operation is actually not unique, meaning that, from the view-
point of rate-distortion optimization, we are expecting to find the
optimal HS operation, which is the main interest of this paper.

Recalling the key steps of HS based approaches, we first use
a predictor to predict the cover elements and then construct a PE
sequence (PES), whose generation involves a local complexity e-
valuation function allowing us to preferentially use smooth ele-
ments for providing better performance. Thereafter, with the PES,
a PE histogram (PEH) can be constructed. As a pooled vector of
the noise-like PEs, the PEH enables us to effectively embed a se-
cret payload with low distortion as long as the HS parameters are
well chosen. Many conventional works use a fixed HS operation,
which can be roughly descried as follows. The central PEH bins
(if any) are unchanged. The two-side border PEH bins are shift-
ed along the two side-directions to reserve empty positions, and
the rest bins are shifted along the corresponding direction to car-
ry the secret bits. For single-layer embedding, one could easily
find the optimal HS operation that minimizes the introduced dis-
tortion. For multi-layer embedding, using the empirical HS oper-
ation will be a good choice, which, however, may be not optimal
in terms of rate-distortion optimization. Heuristically tuning the
HS parameters by a non-deterministic manner may achieve better
performance, but it is not desirable for reproducibility of experi-
ments. It therefore motivates us to introduce a deterministic rate-
distortion optimization algorithm for HS embedding. We point
that, both LC and DE can be generalized by proposed work.

Specifically, we model HS in a bipartite graph. The vertices
in the bipartite graph correspond to the PEH bins, and edges show
the shifting relationship between vertices. All edges are assigned
with a weight to specify the corresponding shifting distortion.
We find the minimum weight maximum matching (MWMM) in
the bipartite graph such that the optimal HS parameters can be
obtained, which minimizes the distortion under given constraint.
We incorporate the proposed work into a part of state-of-the-arts,
and experiments show that it can significantly improve the perfor-
mance. The structure of this paper is organized as follows. The
problem is first formulated in the next section. Then, we present
the proposed graph matching model. The implementation issues
and solutions are thereafter provided, followed by experimental
results and analysis. Finally, we conclude this paper and provide
further research directions.

Problem Formulation
We use image as the cover. Let x(t), t ≥ 0, be the image em-

bedded with t times. Obviously, x(0) is the original image without
hidden bits. Let x(t) = (x1

(t), x2
(t), ..., xn

(t)) ∈ X = In be an n-pixel
cover image with pixel range I, e.g., I = {0,1, ...,255} for 8-bit
grayscale image. For a payload, we use x(0) and x(t) to generate
x(t+1)(t ≥ 0) with HS operation. We expect to minimize

D(x(0),x(t+1)) =
n

∑
i=1

ρi(x(0),xi
(t+1)), (1)

where ρi : X× I 7→ R exposes the cost of changing xi
(0) to xi

(t+1).
For invertible embedding, we often use squared error to evaluate
the distortion. In default, we use mean squared error (MSE), i.e.,

D(x(0),x(t+1)) =
1
n
·

n

∑
i=1

(xi
(0)− xi

(t+1))2. (2)

We predict elements in x(t), and generate a PEH. Let h(v) be
the occurrence of the PEH bin with value v, where |∗| is the size of
a set. We use HS for data embedding. Mathematically, let A and B
denote a set including all PEH bins and that contains all non-zero
occurrence bins, i.e., A = {v|v∈ (−|I|, |I|)}, B = {v|h(v)> 0}⊂A.
For a peak-bin set P = {p1, p2, ..., pm} ⊂ B, we first find such
two injective functions g0 and g1 that, G0 = {g0(p1), g0(p2), ...,
g0(pm)} ⊂ A and G1 = {g1(p1), g1(p2), ..., g1(pm)} ⊂ A, where
G0 ∩G1 = /0. Another injective function f : B \P 7→ A \ (G0 ∪
G1) is also required. Suppose the bit-size of message is no more
than ∑

m
i=1 h(pi), for data embedding, according to f , we first shift

all PEH bins in B \P into some bin-positions of A \ (G0 ∪G1).
Thereafter, since the bin-positions of (G0∪G1)\P are empty (i.e.,
with zero occurrence), one can easily embed the secret bits by
shifting the bins in P into the bin-positions of (G0∪G1).

Let c(t) = (c1
(t), c2

(t), ..., cnt
(t)),nt ≤ n, represent all the cov-

er pixels to be embedded. For compactness, we sometimes con-
sider c(t) and ci

(t) as a set including all the pixels to be embedded
and the i-th pixel with a value of ci

(t). Similarly, we denote the
prediction of c(t) and its marked version by z(t) = (z1

(t), z2
(t), ...,

znt
(t)) and s(t) = (s1

(t), s2
(t), ..., snt

(t)). The PEs e(t) = (e1
(t), e2

(t),
..., ent

(t)) between c(t) and z(t) is therefore denoted by

ei
(t) = ci

(t)− zi
(t),(1≤ i≤ nt). (3)

The relationship of c(t) and s(t) can be found from:

si
(t) = zi

(t)+ ê(t)i

=

{
zi
(t)+gbk (ei

(t)), if ei
(t) ∈ P;

zi
(t)+ f (ei

(t)), if ei
(t) ∈ B\P.

(4)

Here, bk ∈ {0,1} is the k-th (present) bit to be embedded.
We use o(t) = (o1

(t),o2
(t), ...,ont

(t)) to denote the original
values of c(t) in x(0). For the pixels not in c(t), the distortion can
be roughly considered as fixed since we will not embed data into
these pixels (though we may empty some LSBs to store the secret
key). To generate x(t+1), our task is

D(x(0),x(t+1)) = min
P,g0,g1, f

1
n
·

nt

∑
i=1

(si
(t)−oi

(t))2 +Ec, (5)

where Ec is a constant (that can be ignored for optimization) and

nt

∑
i=1

(si
(t)−oi

(t))2 = ∑
ei
(t)∈P

(gbk (ei
(t))+ zi

(t)−oi
(t))2

+ ∑
ei
(t)∈B\P

(f (ei
(t))+ zi

(t)−oi
(t))2.

(6)

Obviously, for a fixed P, it is required to determine such
optimal (g0,g1, f) that ∑

nt
i=1(si

(t)− oi
(t))2 is minimized. If this

subproblem is solved, one can enumerate P to find the globally
optimal (P,g0,g1, f) since |P| is often small. We study along this
direction. With optimal (P,g0,g1, f), one can embed data in x(t).

Graph Matching Model
An important task is to find optimal (g0,g1, f) for a fixed P

so that the corresponding distortion could be minimized. Let F
denote the resultant set by applying f to B\P. Figure 1 shows the
relationship between the three injective functions. It is required
that, |P| = |G0| = |G1|, |B\P| = |F |, G0∩G1 = /0, G0∩F = /0, and
G1 ∩F = /0. Notice that, B ⊂ A. If any v ∈ B is mapped to u ∈ A
by f (or g0, g1), we say u (or v) is matched by v (or u) according
to f . Therefore, a total of |B|+ |P| elements in A will be matched
by exactly one element in B according to f , g0 or g1. It is possible
that u = v, e.g., f (v) = v. Also, there are |P| triples (u,v,w) such
that u < w and g−1

b (u) = g−1
1−b(w) = v,b ∈ {0,1}.

According to Eqs. (5, 6), our optimization task is:

L(x(0),x(t+1);P) = min
g0,g1, f

nt

∑
i=1

(si
(t)−oi

(t))2

= min
g0,g1, f

∑
ei
(t)∈P

(gbk (ei
(t))+ zi

(t)−oi
(t))2

+ ∑
ei
(t)∈B\P

(f (ei
(t))+ zi

(t)−oi
(t))2.

(7)

We address this problem by modelling it in a weighted bi-
partite graph. A bipartite graph (typically also called bigraph), is
a graph G(V,E) whose vertex-set V can be divided into such two
subsets V1 and V2 that all edges (in E) connect a vertex in V1 and
a vertex in V2. It is required that, V1∪V2 =V and V1∩V2 = /0. If
all the edges are associated with a weight, it is called a weighted
bipartite graph (or called weighted bigraph).

Figure 1. The relationship between three injective functions g0, g1 and f .

The secret bits can be orderly embedded into c(t). When P,
g0 and g1 are all fixed, with the secret message, one can consider
∑ei

(t)∈P(gbk (ei
(t))+ zi

(t)−oi
(t))2 as constant. Then,

L(x(0),x(t+1);P,g0,g1) =

min
f

∑
ei
(t)∈B\P

(f (ei
(t))+ zi

(t)−oi
(t))2. (8)

Below, we first model Eq. (8) in a weighted bipartite graph
to find optimal f , where P,g0,g1 are fixed. Then, we find optimal
(f ,g0,g1) in Eq. (7) with a newly built weighted bipartite graph.

Model Derivation
Without the loss of generality, we rewrite f as:

f (x) = x+4 f (x), (9)

where4 f (x) has no need to be injective. Therefore,

L(x(0),x(t+1);P,g0,g1) =

min
f

∑
ei
(t)∈B\P

(4 f (ei
(t))+ ci

(t)−oi
(t))2. (10)

To avoid underflow/overflow problem, we should adjust the
boundary pixels to reliable range in advance. The preprocessed
pixels are recorded to constitute a location map, which is self-
embedded. Thus,4 f (x) should be bounded:

−T ≤4 f (x)≤ T,

where T is a positive integer, e.g., T = 1. g0(x) and g1(x) should
be bounded as well. For simplicity, we always have |x−g0(x)| ≤
T and |x−g1(x)| ≤ T .

Let {y1,y2, ...,y|B\P|} denote all elements in B\P. Eq. (10)
can be therefore rewritten as:

L(x(0),x(t+1);P,g0,g1) = min
f

|B\P|

∑
j=1

J(y j; f), (11)

where

J(y j; f) = ∑
ei
(t)=y j

(4 f (y j)+ ci
(t)−oi

(t))2

= ∑
ei
(t)=y j

T

∑
k=−T

δ (4 f (y j),k) · (k+ ci
(t)−oi

(t))2

=
T

∑
k=−T

δ (4 f (y j),k) ∑
ei
(t)=y j

(k+ ci
(t)−oi

(t))2

=
T

∑
k=−T

δ (f (y j)− y j,k) ·Ck(y j),

where δ (x,y) = 1 if x = y, otherwise δ (x,y) = 0; and,

Ck(y j) = ∑
ei
(t)=y j

(k+ ci
(t)−oi

(t))2. (12)

Weighted Bipartite Graph Matching
Each element in B\P should be matched by exactly one ele-

ment in A\ (G0 ∪G1) according to f . Notice that, we often have
|B\P| ≤ |A\ (G0∪G1)|. We expect to find such optimal fopt that
Eq. (11) is minimized. Namely,

fopt = arg min
f

|B\P|

∑
j=1

T

∑
k=−T

δ (f (y j)− y j,k) ·Ck(y j), (13)

subject to

T

∑
k=−T

δ (f (y j)− y j,k) = 1, for all 1≤ j ≤ |B\P|. (14)

With Eq. (12), all possible Ck(y j) can be determined in ad-
vance. We use {q1, q2, ..., q|A\(G0∪G1)|} to represent elements
in A \ (G0 ∪G1). We model Eq. (13) in a weighted bipartite
graph. To build the bipartite graph, we first denote two disjoint
sets by V1 = B \P and V2 = A \ (G0 ∪G1). With Eq. (14), for
every possible (i, j), if |y j− qi| ≤ T , we assign an edge between
y j and qi in the bipartite graph. It indicates that, it is possible that
fopt(y j) = qi. Meanwhile, all edges will be assigned with the cor-
responding weights. Specifically, if there exists an edge between
y j and qi, the assigned weight should be Cqi−y j (y j), meaning that,
if fopt(y j) = qi, the corresponding distortion is Cqi−y j (y j).

In a bipartite graph, there may be many candidates for max-
imum matching. A maximum matching ensures that, there have
no two edges sharing the same vertex, and the number of edges in
the matching is maximum. For any maximum matching Mmax of
a bipartite graph, there must be |Mmax| ≤min{|V1|, |V2|}. As fopt
is injective, we can infer that, fopt corresponds to such a matching
Mopt that |Mopt| = |V1|, where Mopt is also a maximum matching
since |Mopt|= |V1| ≥min{|V1|, |V2|} ≥ |Mmax|, i.e.,

Property 1. fopt corresponds to such a maximum matching
Mopt that |Mopt|= |V1|, where V1 = B\P.

Moreover, it can be seen from Eq. (13) that, fopt requires
that, the sum of edge-weights in Mopt should be the minimum.
Therefore, to find fopt, we have to determine

Mopt = arg min
|M|=|V1|

∑
(y j ,qi)∈M,y j∈V1,qi∈V2

Cqi−y j (y j). (15)

Namely,
Property 2. Mopt has the minimum sum of weights.
In graph theory, for a weighted bipartite graph, a minimum

weight maximum matching (MWMM) is defined as a maximum
matching where the sum of weights associated to the edges in the
matching is minimum. We can determine Mopt in the weighted
bipartite graph with Hungarian algorithm, and then easily con-
struct fopt with Mopt. Since the Hungarian algorithm is a classical
algorithm, we will not introduce it. We refer a reader to Ref. [9].

Extended Weighted Bipartite Graph Matching
We have introduced the method to find optimal f for fixed P,

g0 and g1. To find the globally optimal strategy, one could further
enumerate all possible combinations between P, g0 and g1. Since
in applications, |P| is often small, one can easily find all possible
P. For example, if |P|= 2, the time complexity is O(|B|2), where
|B| << |A|, e.g., |B| = 40 and |A| = 511. Actually, as ∑p∈P h(p)
should be no less than the size of required payload, the number of
usable P could be significantly reduced during enumeration.

However, for a fixed P, one has to enumerate all possible g0
and g1. As |x−g0(x)| ≤ T and |x−g1(x)| ≤ T , the time complex-

ity to enumerate g0 and g1 is O(
(2T+1

2
)|P|

). This requires us to
choose small |P| or T since the time complexity has the exponen-
tial form. From an empirical viewpoint, one can set G0 = P, i.e.,
g0(x) = x, which has been used in traditional HS strategy. Thus,
the time complexity is reduced as O((2T +1)|P|), which is lower
than the original one, yet still high.

It has motivated us to propose a new bipartite graph structure
so that, for a fixed P, we can find the optimal (f ,g0,g1) simulta-
neously by solving the MWMM task in the newly built bipartite
graph. In this way, our task is only to enumerate all possible P.
As mentioned above, |P| can be small, indicating that, the globally
optimal (P, f ,g0,g1) can be determined effectively.

In the newly built bipartite graph, we have V1 = B∪Pc and
V2 = A, where Pc is a “copy” of P. It does not mean P = Pc, but
rather a newly inserted set. It means that, though P and Pc have
the same values, they correspond to different sets in the bipartite
graph. We rewrite V1 as:

V1 = B∪Pc = (B\P)∪P∪Pc. (16)

Therefore, there are a total of |A|+ |B|+ |Pc| vertices. All
edges in the bipartite graph connect a vertex in V1 and another
one in V2. Since V1 can be divided into three disjoint subsets as
shown in Eq. (16), we can also divide all the edges into three
types. Namely, for the new bipartite graph G(V,E),

E = {(u,v) |u ∈V1,v ∈V2}= E1∪E2∪E3, (17)

where E1 = {(u,v) | u∈ B\P,v∈V2}, E2 = {(u,v) | u∈ P,v∈V2}
and E3 = {(u,v) | u ∈ Pc,v ∈V2}.

In the newly built bipartite graph, the edges in E1 show all
possible shifting-relationship for the PEH bins belonging to B\P.
It means that, f will be corresponding to a subset of E1. For
any PEH bin v belonging to P, if the current bit to be embedded
is “0”, we will modify it as g0(v). Otherwise, g1(v) is used to
replace v since the secret bit will be “1”. Therefore, for all bins
in P, there are two possible shifting operations, which depend on
the value of the message bit to be embedded. To model the two

shifting operations in the newly built bipartite graph, we use E2
to indicate the shifting-relationship corresponding to g0, and E3
to indicate the shifting-relationship corresponding to g1. Both g0
and g1 rely on P. That is why we propose to use a copy of P here
to split the dependency, which is a highlight of this paper.

Suppose V1 = B ∪ Pc = {u1,u2, ...,u|V1|} and V2 = A =
{v1,v2, ...,v|V2|}, for every possible index-pair (i, j), if ui ∈ B \P
and |ui− v j| ≤ T , we add an edge (ui,v j) ∈ E1, and the weight
is determined as Cv j−ui(ui) according to Eq. (12). If ui ∈ P ⊂ V1
and |ui−v j| ≤ T , we add an edge (ui,v j) ∈ E2, and the weight is:

Cv j−ui(ui) = ∑
el

(t)=ui

δ (bk,0) · (v j−ui + cl
(t)−ol

(t))2, (18)

where bk ∈ {0,1} means the k-th (current) bit to be embedded.
Otherwise, if ui ∈ Pc ⊂ V1 and |ui− v j| ≤ T , we add an edge be-
tween ui and v j (∈ E3), and the weight is:

Cv j−ui(ui) = ∑
el

(t)=ui

δ (bk,1) · (v j−ui + cl
(t)−ol

(t))2. (19)

All edges are assigned with a weight to specify the corre-
sponding distortion. Accordingly, a weighted bipartite graph can
be finally constructed. We find the MWMM in the newly built bi-
partite graph, by which we can compute the optimal (f ,g0,g1) for
a fixed P. One can enumerate P and repeatedly call the proposed
optimization method to find the final (P, f ,g0,g1).

Example of the MWMM
An example is provided here for better explanation. Sup-

pose that, A = {−6,−5, ...,6}, B = {−5,−3,−2,−1,0,1,2,3,4},
P = {−1,1}. Our task is to find the optimal (f ,g0,g1) such that a
total of h(−1)+h(1) bits can be embedded while the introduced
distortion is minimized. Notice that, we do not assume here that
the histogram is Gaussian-like, but rather that the histogram can
be arbitrary. Obviously, we have B \P = {−5,−3,−2,0,2,3,4}
and Pc = {−1c,1c}. Here, we use a mark “c” to distinguish the el-
ements in P and that in Pc. It means that, “−1c ∈Pc” and “−1∈P”
are corresponding to two different vertices in the bipartite graph
though they have the same value. In addition, we set T = 2. Fig-
ure 2 (a) shows the newly built bipartite graph, and (b) gives the
MWMM. The optimal f , g0 and g1 are corresponding to black
edges, blue edges and red edges shown in Figure 2 (b), respective-
ly. For example, “1c” is matched by “2”, meaning that, g1(1) = 2.
And, “2” is matched by “3”, i.e., f (2) = 3. In Figure 2 (a), C2(4)
shows the distortion by shifting “4” to “’6’. C−1(−5) represents
the distortion by shifting “-5” to “-6”, here, −1 =−6− (−5).

Implementation Issues and Solutions
In this section, we address two key implementation issues.

Reversibility
A data hider has to self-embed P, g0, g1 and f . Since |P| is s-

mall, the space to store P, g0 and g1 will be small. Self-embedding
g0, g1 and f means to embed integer-pairs, e.g., g0(3) = 4 tell-
s us to embed (“3”,“4”). To embed f : B \ P 7→ V2, one can
first sort elements in B \P in an increasing order, where the d-
ifference between two adjacent elements is often small (e.g., “-
1” in most cases). We can use run-length encoding (RLE) or

Figure 2. An example to find optimal (f ,g0,g1) for a fixed P: (a) the newly built weighted bipartite graph, (b) the MWMM. (Notice that, the MWMM is not unique.)

arithmetic coding (AC) to compress the differences. The corre-
sponding elements in V2 should be recorded as well. Let B \P
be {u1,u2, ...,u|B\P|}, where u1 < ... < u|B\P|. we can compress
{ f (u1)− u1, f (u2)− u2, ..., f (u|B\P|)− u|B\P|} by RLE or AC s-
ince they are bounded by using a small T .

There are different methods to achieve self-embedding. For
example, the data hider can choose a part of pixels (not in c(t))
to store the above-mentioned auxiliary data. The LSBs of these
pixels will be kept unchanged throughout the specified-layer em-
bedding such that one can successfully extract the hidden bits and
recover the image content. The original LSBs will be considered
as a part of the secret data.

Weight Determination
According to Eqs. (12, 18, 19), the computational complex-

ity of weight determination is O(nt × |V1| × (2T + 1)). One can
determine the weights by an exhaustive way as long as the compu-
tational resource is enough. However, it would be more suitable
to reduce the computational cost from the viewpoint of practical
use. We aim to reduce the complexity. We rewrite Eq. (6) as:

nt

∑
i=1

(si
(t)−oi

(t))2 =
nt

∑
i=1

(zi
(t)+ ê(t)i −oi

(t))2

=
nt

∑
i=1

(ci
(t)−oi

(t)+ ê(t)i − ei
(t))2

=
nt

∑
i=1

(αi
(t)+βi

(t))2,

(20)

where αi
(t) = ci

(t)-oi
(t) and βi

(t) = ê(t)i -ei
(t) = ∆(ei

(t)).

Obviously, all αi
(t) (1≤ i≤ nt) are constants before data em-

bedding, meaning that, they can be determined in advance. And,
|βi

(t)| ≤ T for all 1≤ i≤ nt . We use H = {Hu,v|− |I|< u,v < |I|}
to record the occurrence of every possible pair (u,v), where u rep-
resents the possible value of αi

(t) and v shows the possible value
of ei

(t). Then, we have:

nt

∑
i=1

(αi
(t)+βi

(t))2 = ∑
u

∑
v

Hu,v · (u+∆(v))2

= ∑
u

∑
v∈P

Hu,v · (u+∆(v))2

+∑
u

∑
v∈B\P

Hu,v · (u+∆(v))2,

(21)

where

∑
v∈P

Hu,v · (u+∆(v))2 = ∑
v∈P

Hu,v

2
· (u+g0(v)− v)2

+ ∑
v∈P

Hu,v

2
· (u+g1(v)− v)2,

and

∑
v∈B\P

Hu,v · (u+∆(v))2 = ∑
v∈B\P

Hu,v · (u+ f (v)− v)2.

We take Eq. (12) as the task to be addressed. Eqs. (18, 19)
can be processed according to a similar way. Based on Eq. (21),

we rewrite Eq. (12) as:

Ck(y j) = ∑
ei
(t)=y j

(k+ ci
(t)−oi

(t))2

= ∑
u

∑
v=y j

Hu,v · (u+ k)2,
(22)

which is corresponding to a time complexity of O(|I|2).
Therefore, once we find H with a complexity of O(nt), for

each edge, we can obtain its weight with a complexity of O(|I|2),
resulting in a whole complexity of O(nt + |V1|× (2T +1)×|I|2),
which significantly outperforms the enumeration strategy.

Simulation Results and Analysis
In this section, we conduct experiments to evaluate the pro-

posed work. Since our work was originally designed for HS oper-
ation, it is fair and necessary to compare it with HS based works.
We incorporate the proposed optimization algorithm into four HS
based invertible embedding algorithms, i.e., PC HS [10], RW SP
[3], GF HS A1 [8] and DCSPF [7], to evaluate the rate-distortion
performance. In our experiments, for an embedding algorithm,
we only optimize the HS operation, meaning that, the others such
as pixel prediction, pixel selection and local-complexity function
are all the same as the original ones.

Experimental Setup
Since the time complexity of enumerating all P has the fac-

torial form, for simplicity, we use |P| = 2 for all embedding al-
gorithms and their optimized versions so that searching the opti-
mal P will not be time consuming. The optimized versions of the
above-mentioned algorithms are denoted by “PC HS opt”, “R-
W SP opt”, “GF HS A1 opt” and “DCSPF opt”, respectively. It
is pointed that, for the original embedding algorithms, one can ac-
tually use multiple PEH bins to carry the secret data. Therefore,
it can be said that, we actually simplify the embedding operation.

In PC HS and GF HS A1, one has to use non-overlapped
pixel-blocks to carry secret bits. The block-size is set to be 3×
3 for both methods, which is the same as described in the two
methods. In GF HS A1, before data embedding, the authors use
a pixel selection parameter s to take advantage of smooth pixels.
In our simulation, when to use the proposed optimization method,
there has no need to determine s directly since we can sort the
local-complexities in an increasing order such that smooth pixels
can be utilized for data embedding, which is equivalent to using
s. It means that, we will not determine and store s for GF HS A1
opt. The other content-dependent operations for PC HS opt and
GF HS A1 opt are the same as PC HS and GF HS A1.

In DCSPF, one has to set two important system parameters,
i.e., the pixel-blocking rate and the number of pixel-selection lay-
ers. We enumerate the pixel-blocking rate from 10% to 90% with
a step of 10%, and vary the number of pixel-selection layers from
3 to 6 with a step of 3 for both DCSPF and DCSPF opt. Other
operations for DCSPF opt are the same as DCSPF.

For each non-optimized embedding algorithm, with an im-
age, boundary pixels are adjusted into the reliable range in ad-
vance according to T . The resulting location map will be lossless-
ly compressed by AC and self-embedded into the preprocessed
image together with the secret message. The HS parameters and
secret key are embedded into the LSBs of pixels in the border of

Table 1. The averaged size (bits, rounded to integer) of loss-
lessly compressed codes.

Algorithms T = 1 T = 2 T = 3

PC HS opt 357 471 481

GF HS A1 opt 140 152 154

DCSPF opt 149 160 169

RW SP opt 188 257 264

an image. The original LSBs are collected and self-embedded to-
gether with the secret message. For each optimized algorithm, we
use the LSBs of pixels in the border of an image to store (f ,g0,g1)
and secret key, the original LSBs are collected and self-embedded.

Multiple-pass embedding strategy [8] was used for PC HS,
GF HS A1 and their optimized versions. In RW SP, a data hider
can first use the dot set for data embedding and cross set for pre-
diction. Then, the cross set can be used for data embedding, and
the dot set for prediction, which is also a kind of multiple-pass
strategy. For multi-layer embedding, since it is free to set the pay-
load size of each layer, in default, we will embed additional bits
into a specified layer as much as possible controlled by a payload-
step until it cannot carry additional bits, and the higher-layer em-
bedding is then applied if the entire payload is not fully carried.
Notice that, this strategy may be not optimal. We use a random
bit-string to represent the to-be-embedded data. For PC HS, R-
W SP, and GF HS A1, the payload-step is set as 5000. For D-
CSPF, the payload-step is set as 1000. Notice that, it is always
free to set the payload-step. The payload-steps for the optimized
systems are the same as their non-optimized versions.

Auxiliary Data and Runtime Analysis
With the proposed method, one can obtain the optimized P,

f , g0, and g1. Comparing with an original system, the optimized
system may carry more side information, which is mainly affected
by (f ,g0,g1). Therefore, we have to analyze the size of losslessly
compressed auxiliary data used for storing (f ,g0,g1).

We take Airplane, Lena, Baboon and Sailboat (from smooth
to complex) sized 512×512×8 for experiments. With the afore-
mentioned payload-step, we orderly increase the entire payload-
size started from 1×104. For each image, during data embedding,
when the required (f ,g0,g1) is determined, we losslessly encode
them and compute the size of compressed code. For each image,
50 compressed codes corresponding to different (f ,g0,g1) are or-
derly collected. The mean size is computed. The mean sizes for
the four test images are further averaged as the final result.

Table 1 shows the results due to different T . It is seen that,
different algorithms have different sizes of the compressed code.
A larger T usually has a relatively larger size of the compressed
code. In cases T = 2 and T = 3, the sizes are close to each oth-
er, meaning that, when T increases, the size will not significant-
ly increase. Overall, the sizes are kept relatively low. It is al-
so admitted that, when the size of entire payload is quite small,
e.g., 1000 bits, the ratio of such auxiliary data would be relatively
large. Therefore, it is not recommended to embed a quite small
payload in practice when to use the optimized model. Further-
more, PC HS opt has a relatively larger size of compressed code.
The reason is, unlike other methods, in PC HS, the prediction of

Figure 3. The rate-distortion performance comparison with a set of 200 images (bpp: bits per pixel). The embedded payloads include the side information.

Table 2. The averaged running time (in seconds) of executing
the proposed optimization procedure.

Algorithms T = 1 T = 2 T = 3

PC HS opt 5.26 7.74 11.38

GF HS A1 opt 0.31 0.53 0.82

DCSPF opt 0.83 1.55 2.55

RW SP opt 0.67 1.37 2.34

a pixel simply equals the central pixel in the corresponding block,
which results in a larger |B| that cannot benefit the compression
procedure. It can be said that, though our work does not rely on
any specific content-dependent procedure, well-designed content-
dependent procedure can keep the size of compressed code low.

It is necessary to analyze the running time for use. As men-
tioned above, we collect compressed codes for each test image. It
is true that, during the process, we can simultaneously determine
the running time of executing the proposed optimization proce-
dure. The averaged running time can be computed similar to Ta-
ble 1. We use MATLAB R2012b and Microsoft Visual C++ 2010
(compiler, for mex files) as the simulation platform. The pro-

cessor (x64-based) information of our used laptop (Windows 8,
64-bit OS) is: Intel(R) Core(TM) i5-4200U CPU 1.60 GHz. And,
the installed memory (RAM) is 4.00 GB (3.90 GB usable). Table
2 shows the results due to different T . A larger T implies a higher
running time of executing the proposed optimization procedure.
Even though different methods have different computational cost-
s, the running time is overall acceptable. As shown in Table 2,
the running time for PC HS opt is significantly higher than other
methods, which is due to the different content-dependent oper-
ations. It implies that, well-designed content-dependent process
has the ability to keep the running time low.

Rate-distortion Performance Evaluation
We use 200 images randomly selected from BOSSBase 1.01

[11] to evaluate the rate-distortion performance. The test images
are all grayscale and sized 512×512×8. For a payload, the mean
PSNR is used as the distortion measure. A payload to be embed-
ded is treated as a random bit-string. We optimize T in range
[1, 3]. Figure 3 shows the comparison results for different algo-
rithms. It is observed that, different embedding systems equipped
with the proposed approach result in different improvement. The
reason includes at least two aspects: 1) different algorithms have
different content-dependent operations, which allow different al-

Figure 4. An intuitive explanation to rate-distortion optimization of invertible

embedding (multi-layer) from the perspective of a search tree model.

gorithms to use different PEHs for data embedding; and 2) differ-
ent images have different statistical characteristics, enabling an
algorithm to use different image areas for embedding and thus
provide different performance. Though the performance vary for
different optimized embedding algorithms, overall, the optimized
algorithms could improve their original versions significantly.

For DCSPF opt, the performance improvement is not as sig-
nificant as other algorithms. Comparing with other algorithms,
the rate-distortion performance of DCSPF opt is close to that of D-
CSPF. The reason is that, in DCSPF, an efficient dynamic content-
dependent approach is proposed to take advantages of the smooth
pixels as much as possible. Meanwhile, an enumeration manner
for searching near-optimal pixel selection parameters is applied,
which allows a hider to select the best PEH from many candi-
dates for data embedding. It makes small room for performance
improvement since the proposed model focuses on the combina-
torial optimization of the HS operation while the other steps are
the same as the original ones. Therefore, it is possible that the
performance improvement for a well-designed system equipped
with the proposed optimization procedure is not significant.

Example of Optimized HS Operation
We further show an example observed from our experiments

that the optimized HS operation was different from the tradition-
al one. We take RW SP opt for explanation. We set T = 2 and
embed a total of 10.5× 104 bits (≈ 0.40 bpp) into Lena with t-
wo embedding-layers controlled by above-mentioned step-value.
Thereafter, in the third layer, we first embed 1.5× 104 bits in-
to the dot set, and then embed 1.5× 104 bits into the cross set.
We analyze the optimized (f ,g0,g1) for the cross set. We find
that P = {−6,5}, h(−6) = 6738, h(−7) = 5011, h(5) = 8262
and h(6) = 5934. And, g0(−6) = −6, g1(−6) = −8, g0(5) = 5,
g1(5) = 7, f (−7) = −7, f (6) = 6. It is seen that, the opti-
mized g1 is different from the traditional operation which cor-
responds to g1(−6) = −7 and g1(5) = 6. To this end, we de-
termine the shifting distortion between different PEs according
to Eqs. (12, 18, 19), namely, C0(−6) = 13035, C−1(−6) =
29586, C−2(−6) = 52875, C0(−7) = 19168, C−1(−7) = 43639,

C0(5) = 15976, C1(5) = 36265, C2(5) = 64816, C0(6) = 22902,
C1(6) = 52016. It is easy to determine the distortion for opti-
mized (g0,g1), i.e., d0 = C−2(−6)+C0(−6)+C0(5)+C2(5) =
146702. Notice that, C−2(−6) shows the distortion introduced
by modifying a half bins with a value of “−6” as that with a
value of “−8”. The computation for C−1(−6), C0(−6), C0(5),
C1(5) and C2(5) are similar. The traditional operation corre-
sponds to d1 = C−1(−6) +C0(−6) +C0(5) +C1(5) = 94862.
We need to further consider the distortion introduced by f . For
simplicity, we here only consider the distortion impact intro-
duced by the PEs “−7” and “6”. For optimized f , we have
d2 = C0(−7)+C0(6) = 42070. While for the traditional opera-
tion, we have d3 =C−1(−7)+C1(6) = 95655. Obviously, though
d0 > d1, we have d0 +d2 = 188772 < d1 +d3 = 190517, indicat-
ing that, the overall distortion introduced by the optimized oper-
ation will be lower than the traditional operation, which has veri-
fied the superiority. Notice that, the overall distortion introduced
by optimized (f ,g0,g1) does not equal d0+d3. We actually show
the simplified derivation here. In practice, one should further take
into account the other PEs for computing the overall distortion.

We also found that, in a very few cases, the optimized al-
gorithms introduce a relatively slightly higher distortion. We ex-
plain this normal phenomenon from the perspective of a search
tree model. For both the optimized algorithm and its original ver-
sion, the embedding procedure corresponds to a path in the search
tree. For example, in Figure 4, the node-paths for an optimized
algorithm and its traditional version are A→ B→ D→ F → H
and A→ C→ E → G→ I, respectively. For an optimized algo-
rithm, starting from the root node (corresponding to the original
host), a suboptimal node (in terms of rate-distortion performance)
is selected out at each layer. For the non-optimized version, it
selects a child-node that may be not optimal for the correspond-
ing layer. For example, node B outperforms node C in terms of
rate-distortion performance. However, when the data-embedding
layer becomes deeper, it is possible that in some layer, the tradi-
tional operation may be better than the optimized version since the
selection of a node also relies on its father-node. For example, in
Figure 4, it is possible that nodes {B,D,F} outperform {C,E,G}
while I may provide a lower distortion than H since the genera-
tion of I and H rely on {A,G} and {A,F} respectively, which are
two different inputs for distortion optimization.

We would like to point that, when to produce x(t+1), the tra-
ditional HS operation only corresponds to a maximum matching,
it may not ensure the minimum distortion. Therefore, the rate-
distortion performance of a scheme equipped with the proposed
optimization method will not be worse than that with the tradition-
al operation for the identical input. If the traditional HS strategy
is optimal, our method will surely find it out.

Conclusion and Discussion
Mainstream invertible embedding operations can be general-

ized by injective functions (g0,g1, f), relying on P. We use graph
matching model to optimize the functions. We first fix (g0,g1)
and model f in a weighted bipartite graph. Then, we relax (g0,g1)
and model (g0,g1, f) in an extended weighted bipartite graph. Ex-
perimental results have shown the superior performance. A lot of
practical optimization problems can be modeled as a graph prob-
lem. The core work is to build equivalence between the target
problem and some graph model. Modeling information hiding in

graphs is an important and promising topic. There are some relat-
ed works [12], [13], [14], that have been reported for steganogra-
phy. To the best knowledge of the authors, few works study the
rate-distortion optimization of invertible embedding with graphic
optimization models. This work presents a different perspective
to invertible embedding. In the future, we are to improve the pro-
posed algorithm. For example, the existing work [15] has shown
that one can use multiple PEs as the embedding unit, which may
provide superior performance. However, when to model multiple
PEs as an embedding unit, the corresponding graph model will be
more complex and difficult. We address this problem in future,
and investigate steganography using graph models.

Acknowledgement
It was supported by National Natural Science Foundation

of China under grant numbers 61902235, U1636206, U1936214,
and 61525203. It was also supported by “Chen Guang” project
co-funded by the Shanghai Municipal Education Commission and
Shanghai Education Development Foundation.

References
[1] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker. Digital wa-

termarking and steganography. Morgan Kaufmann, Nov. 2007.
[2] Z. Ni, Y. Shi, N. Ansari, and W. Su. Reversible data hiding. IEEE

Trans. Circuits Syst. Video Technol., 16(3): 354-362, Mar. 2006.
[3] V. Sachnev, H. Kim, J. Nam, S. Suresh, and Y. Shi. Reversible

watermarking algorithm using sorting and prediction. IEEE Trans.
Circuits Syst. Video Technol., 19(7): 989-999, Apr. 2009.

[4] J. Fridrich, M. Goljan, and R. Du. Lossless data embedding - new
paradigm in digital watermarking. EURASIP J. Applied Signal Pro-
cess., 2002(2): 185-196, Dec. 2002.

[5] J. Tian. Reversible data embedding using a difference expansion.
IEEE Trans. Circuits Syst. Video Technol., 13(8):890-896, Aug.
2003.

[6] H. Wu, Y. Shi, and H. Wang. PPE-based reversible data hiding. In:
Proc. ACM Workshop Inf. Hiding Multimed. Security, pp. 187-188,
Jun. 2016.

[7] H. Wu, Y. Shi, and H. Wang. Dynamic content selection-and-
prediction framework applied to reversible data hiding. In: Proc.
IEEE Workshop Inf. Forensics Security, pp. 1-6, Dec. 2016.

[8] X. Li, B. Li, B. Yang, and T. Zeng. General framework to
histogram-shifting-based reversible data hiding. IEEE Trans. Im-
age Process., 22(6): 2181-2191, Jun. 2013.

[9] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to

algorithms. The MIT Press, Jul. 2009.
[10] P. Tsai, Y. Hu and H. Yeh, “Reversible image hiding scheme using

predictive coding and histogram shifting,” Signal Process., 89(6):
1129-1143, Jun. 2009.

[11] P. Bas, T. Filler, and T. Pevný, “Break our steganographic system -
the ins and outs of organizing BOSS,” In: Int. Workshop Inf. Hiding
(IH’11), vol. 6958, pp. 59-70, May 2011.

[12] H. Wu and H. Wang, “Multibit color-mapping steganography using
depth-first search,” In: IEEE Int. Symp. Biometrics and Security
Technol. (ISBAST’13), pp. 224-229, Jul. 2013.

[13] S. Hetzl and P. Mutzel. “A graph-theoretic approach to steganogra-
phy,” In: Proc. Int. Conf. Commun. Multimed. Security, vol. 3677,
pp. 119-128, Sept. 2005.

[14] H. Wu, H. Wang, H. Zhao and X. Yu, “Multi-layer assignmen-
t steganography using graph-theoretic approach,” Multimed. Tools
Appl., 74(18): 8171-8196, Sept. 2015.

[15] B. Ou, X. Li, Y. Zhao, R. Ni and Y. Shi, “Pairwise prediction-error
expansion for efficient reversible data hiding,” IEEE Trans. Image
Process., 22(12): 5010-5021, Dec. 2013.

Author Biography
Hanzhou Wu received both B.Sc. and Ph.D from Southwest Jiaotong

University, Chengdu, China, in 2011 and 2017. From 2014 to 2016, he
was a visiting scholar in New Jersey Institute of Technology, New Jersey,
United States. He was a researcher in Institute of Automation, Chinese A-
cademy of Sciences, from 2017 to 2019. Currently, he is an Assistant Pro-
fessor in Shanghai University, China. His research interests include infor-
mation hiding, graph theory and game theory. He has published around
20 papers in peer journals and conferences such as IEEE TDSC, IEEE
TCSVT, IEEE WIFS, ACM IH&MMSec, and IS&T Electronic Imaging,
Media Watermarking, Security and Forensics.

Xinpeng Zhang received B.Sc. from Jilin University, China, in 1995,
and the M.S. and Ph.D. from Shanghai University, in 2001 and 2004, re-
spectively. Since 2004, he has been with the faculty of the School of Com-
munication and Information Engineering, Shanghai University, where he
is currently a full-time Professor. He is also with the faculty of the School
of Computer Science, Fudan University. He was with The State University
of New York at Binghamton as a Visiting Scholar from 2010 to 2011, and
also with Konstanz University as an experienced Researcher, sponsored by
the Alexander von Humboldt Foundation from 2011 to 2012. His research
interests include multimedia security, image processing, and digital foren-
sics. He has published over 200 research papers. He served an Associate
Editor of IEEE Transactions on Information Forensics and Security.

