Watermarking in Deep Neural Networks via Error

Back-propagation

Jiangfeng Wang®, Hanzhou Wu'+*, Xinpeng Zhang'+*, and Yuwei Yao'
"School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
*Shanghai Institute for Advanced Communication and Data Science, Shanghai 200444, China

* Email: h.wu.phd@ieee.org, xzhang@shu.edu.cn

Abstract

Recent advances in deep learning (DL) have led to great suc-
cess in tasks of computer vision and pattern recognition. Sharing
pre-trained DL models has been an important means to promote
the rapid progress of research community and development of DL
based systems. However, it also raises challenges to model au-
thentication. It is quite necessary to protect the ownership of the
DL models to be released. In this paper, we present a digital wa-
termarking technique to deep neural networks (DNNs). We pro-
pose to mark a DNN by inserting an independent neural network
that allows us to use selective weights for watermarking. The in-
dependent neural network is only used in the training phase and
watermark verification phase, and will not be released publicly.
Experiments have shown that, the performance of marked DNN
on its original task will not be degraded significantly. Meantime,
the watermark can be successfully embedded and extracted with a
low neural network loss even under the common attacks including
model fine-tuning and compression, which has shown the superi-
ority and applicability of the proposed work.

Introduction

Recent progress in deep learning (DL) has led to a dramatic
surge in the use of DL models for a wide variety of applications
such as image classification, speech recognition, natural language
processing, and so on. Many state-of-the-art deep neural networks
(DNNs) such as LeNet [1], AlexNet [2], VGGNet [3], GoogLeNet
[4] and ResNet [5] have shown more superior performance than
traditional statistical learning methods. Major enterprises like Ap-
ple, Google, Facebook, Microsoft, and Amazon have already de-
ployed DL models in their commercial products and services.

The design of DNNs requires designers’ extensive expertise
and large quantities of training data and time, e.g., it takes weeks
and even more time to train a very deep ResNet [5] with latest
GPUs on the ImageNet dataset [6]. It, to a certain extent, has led
to the boom of open-source communities, allowing pre-trained
models to be publicly released for research and practice. Besides,
releasing a trained model allows users to adapt the model to a new
task by fine-tuning with a low computational cost.

Although the released models can facilitate the research and
development of DL, they may be used for illegal or unauthorized
purposes by malicious users. For example, one can use a released
model for commercial service, which may seriously infringe the
owner’s right. It therefore requires us to investigate an effective
way to protect the copyright ownership when a pre-trained model
is released, shared, or distributed by somehow way.

Obviously, digital watermarking can be applied to DL mod-

els for ownership protection. Different from watermarking in
digital images, watermarking in DL models can be investigated
from two aspects in terms of the watermark extraction [7-14], i.e.,
white-box setting and black-box setting. For the former, the DL
model parameters and structure can be all accessed by the wa-
termark extractor. For the latter, the model profile including the
parameters and structure are usually inaccessible to the watermark
extractor, who may use a remote application programming inter-
face (API) to access the DL model. In this paper, we focus on the
white-box setting since it is relatively more common in practice.
Referring to the evaluation indicators of images, watermark-
ing in DL models generally considers the following requirements:

o Fidelity: The performance of the marked neural network on
its original task should not be significantly degraded after
embedding a watermark. E.g., if we want to embed a water-
mark into the VGGNet, the image classification accuracy of
the marked VGGNet should not be significantly reduced.

e Robustness: The watermarking algorithm should be able
to well resist against common model attacks such as fine-
tuning and model compression. It is very difficult to design
a watermarking technique resisting against arbitrary attack.

e Security: The embedded watermark should not be accessed
by any unauthorized party. In other words, without the se-
cret key, one will never be able to reconstruct the watermark.

e Capacity: It is desirable to design a watermarking method
allowing a neural network to carry as many bits as possible.

e Efficiency: The computational cost for watermark embed-
ding and extraction should be low in terms of practical use.

Different from watermarking in images, watermarking in DL
models is more difficult since slightly modifying a DL model may
easily degrade the performance on its original task, which is not
acceptable for practice. Moreover, retraining a DL model will
easily remove the embedded watermark, which is a difficult prob-
lem that has not been well addressed at present. A robust water-
marking method usually can resist against specific attack(s) under
restrictions. The common attacks include but are not limited to:

e Model Retraining: The released DL model is retrained with
anew dataset. The current state-of-the-art methods based on
weight modification cannot resist against model retraining.
A neural network containing a well-designed structural pat-
tern may be able to resist against model retraining, which
requires that, the structural pattern is well concealed and re-
moving it will significantly reduce the performance on its o-

Value

Epochs

Figure 1. The updated values versus epochs for several individual weights.

riginal task. We define it as structural watermarking, which
will be investigated in our future work.

Model Compression: This is a very effective means to de-
ploy DNNs. After compressing the DL model, many redun-
dant or unimportant neural nodes can be removed such that
the computational cost can be reduced. Such lossy com-
pression would distort the model parameters, accordingly
enlarging the difficulty of designing robust watermarking
based on parameter alteration.

e Model Fine-tuning: Fine-tuning is a kind of transfer learn-
ing technique. Training a DNN from scratch is time con-
suming and laborious. Model fine-tuning allows us to quick-
ly produce a desired model based on a pre-trained model, by
fine-tuning the parameters with another dataset. It can be an
intentional attack performed by malicious users.

Model Isomorphism: A trained neural network can be mod-
eled as a directed graph, in which the edges are associated
with weights, and the nodes are associated with activation
functions. Accordingly, a DL model may be released as a
form of graph data structure, which allows an attacker to
use an isomorphic graph to replace the original one. Thus,
before extracting the watermark, one has to deal with the
graph isomorphism problem. Though the general graph iso-
morphism problem is one of few standard problems in the
computational complexity theory belonging to NP, we point
that, the graph isomorphism problem sometimes may be re-
duced to finding the statistical similarity between two graphs
according to model parameters and structural characteristic-
s. For example, considering all the weights of each layer
for two DNN:gs, if the two sorted weight-sequences are quite
similar, the two DNNs may be the same. Actually, model
isomorphism will also introduce graph matching problem.

‘We propose to use an independent neural network to insert
watermark information into the selective weights of the host neu-
ral network. The independent neural network will be trained to-
gether with the host neural network. However, after training the
two neural networks, only the host neural network model will be
released and the independent neural network model will be kept
secretly. Experiments have shown that, a watermark can be em-
bedded and extracted with a low loss of the independent neural
network under attacks including model fine-tuning and compres-
sion, without significantly degrading the performance of the orig-
inal task, which has verified the feasibility.

The rest of this paper is organized as follows. We first intro-
duce the proposed method in detail. Then, we conduct convinced

Table 1. The detection accuracy on MNIST!/CIFAR10? by using
marked/non-marked MLP/VGG16. Here, “ALL” means using al-
| weights between the hidden layer and the output layer (ex-
cluding the biases), and “PART” means using all convergent
weights between the hidden layer and the output layer (exclud-
ing the biases). The MNIST was used for MLP, and CIFAR10 for
VGG16. The loss L, measures the difference between retrieved
watermark and raw watermark. The learning rate was p = 0.001
for MLP and u = 0.01 for VGG16, and the regularization coeffi-
cient was set as A = 0.05. The MLP used Adam optimizer, and
the VGG16 used stochastic gradient descent (SGD) optimizer.

DNN/Strategy | Non-marked | Marked | L, (Loss)?
MLP/ALL 97.57% 97.18% 0.0024
MLP/PART 97.57% 97.28% 0.0015
VGG16/ALL 79.29% 77.92% 0.0013
VGG16/PART 79.29% 78.71% 0.0010

"http://yann.lecun.com/exdb/mnist
’https://www.cs.toronto.edu/~kriz/cifar.html
3The bit-size of the embedded watermark was 512.

experiments for performance evaluation and analysis. Finally, we
conclude this paper and provide discussion.

Proposed Method

Embedding a secret watermark into a given DNN is defined
as the task of embedding a [-bit binary vector m € {0, 1} into the
weights of a host model. In this section, we first present our tech-
nical motivation. Then, we show the sketch of proposed method,
followed by the details of watermark embedding and extraction.

Motivation

We used the MNIST for experiments, and found that around
35% weights converged! after 16 epochs during the training phase
with a multilayer perceptron (MLP). The MLP contains three lay-
ers: a 784-D input layer, a 64-D hidden layer and a 10-D output
layer. The ReLU [15] was used as the activation function. Figure
1 shows the updated values of several individual weights during
the training phase. It can be seen that, a part of weights will con-
verge after thousands of iterations. This inspires us to propose a
hypothesis that embedding watermark information into early con-
vergent weights will be quite suitable in terms of fidelity.

We used the watermark embedding algorithm introduced in
[7] for further verifying our hypothesis, where a random matrix
mentioned in [7] was utilized. We tested two algorithms. One was
the original watermarking method introduced in [7], and the oth-
er one only selected the convergent weights out for data embed-
ding while the embedding operation was the same as [7]. Table 1
has shown the results using two different DNNS, i.e., MLP men-
tioned above, and VGG16 [3]. It can be observed that, embedding
watermark bits into convergent weights can achieve better perfor-
mance on the original task compared to that using all weights. It
motivates us to propose a new watermarking technique to further

'A weight was considered as converged if the sample standard devia-
tion of the latest 5 updated values (each corresponds to one epoch) during
training was less than a threshold, e.g., 0.01 in default. Only the weights
between the hidden layer and output layer excluding biases were used.

Input, Deep Neural Network Output,
—
to be watermarked
Selective weights
Independent Output,
e

Input, Neural Network

Figure 2. Sketch of the general framework (for the model training phase).

improve the fidelity and meanwhile provide superior robustness.

General Framework

Figure 2 shows the sketch of the proposed general frame-
work for the model training phase. It consists of two neural net-
works. One is the original neural network to be watermarked and
the other neural network is utilized for embedding/extracting the
watermark into/from the weights of the original neural network.
The independent neural network can be arbitrary effective neural
network. In this paper, we consider it as a MLP without biases.

During the training phase, the selective weights in the orig-
inal neural network are fed to the independent neural network.
The parameters in both neural networks will be updated during
training. Assuming that, the loss functions for the two neural net-
works are represented by L; (for host) and L, (for independent).
By back-propagation, the parameters of the host neural network
will be updated according to L and L,, and the parameters of the
independent neural network will be updated according to only L,.

Watermark Embedding

The watermark is embedded by training the aforementioned
two neural networks simultaneously. A key task is to select the
most suitable weights from the host DNN as the input of the inde-
pendent neural network. We introduce two methods to address the
problem. One is to manually select the convergent weights as the
input. The other one is to let the independent neural network itself
automatically choose the suitable weights, which is achieved by
inserting a new trainable layer between the input and the original
hidden layer after the input.

Let “MANU” and “AUTO” respectively represent the manu-
al method and the automatic method. Figure 3 shows the network
structures for MANU and AUTO. In Figure 3 (a), N indicates the
number of weights classified as convergent, and in Figure 3 (b),
M equals the number of all weights to be watermarked. It means
that, M could be the total number of all trainable parameters of
the host DNN. Due to the limited computational resource, in our
experiments, we embed a watermark into the weights between t-
wo specified layers. A weight is considered as converged if the
sample standard deviation of the latest 5 updated values (each one
corresponds to one epoch) during training is less than a threshold,
e.g., 0.01 in default in this paper. One may redefine convergence.

During the model training, the weights of the two neural net-
works will be updated by back-propagation according to the loss
functions L; and L,. L, is dependent of the task of the host DNN.
L, is defined as the binary cross entropy between the output vector

wp —p

—>
xz Independent

: . Neural Network
Wy —
(a) MANU
Independent
—>

Neural Network

Trainable

(b) AUTO
Figure 3. The network structures for the MANU and AUTO methods.

and the watermark bitstream (for a single sample), i.e.,

~] =
o1~

Lr(m,y) = — (m;-logy; + (1 —m;)-log(1—-y;)), (1)

i=1

where m; is the i-th watermark bit, and y; is the i-th output. For L,
the back-propagation operation will update the reachable weights
of the host DNN. A reachable weight will be updated based on L
and L, simultaneously. Notice that, the entire loss for a reachable
weight is L; + A - Ly, and the weights for the independent neural
network are updated according to only Ly, rather than A - L,.

It can be easily found that, the watermark information is ac-
tually embedded by error back-propagation. Though the MANU
can be considered as a special case of the AUTO intuitively, there
is a significant difference between them. Namely, we should pre-
viously select the convergent weights out for MANU, which is not
needed for AUTO. For MANU, we have to train the host DNN
with several epochs, and then determine the convergent weights.
Thereafter, the convergent weights will be selected and fed to the
independent neural network for further training.

Watermark Verification

Once the training task is finished, the marked neural network
can be released, while the independent neural network should be
kept secretly. In order to extract the watermark showing the own-
ership, the independent neural network will be reused, where its
input will connect to the selective weights of the marked neural
network, and its output indicates the watermark information. For
the output vector, a threshold 0.5 is used to convert a real number
to either 0 or 1. In addition, if the AUTO method was used, the
trainable parameters shown in Figure 3 (b) should be kept secret-
ly as well after the training phase. In order to protect intellectual
property, we have to ensure that the loss of the independent neural
network is low (e.g., smaller than a given threshold).

Experimental Results and Analysis
In this section, experimental results are provided for perfor-
mance evaluation and analysis.

Setup
The aforementioned MLP (tested on MNIST) and VGG16
(tested on CIFAR10) were separately used as the host DNN in

Table 2. The structure of the independent neural network.

Module Number of nodes
Input layer 640 (MLP) / 1728 (VGG16)
Trainable layer | 640 (MLP) /1728 (VGG16)
Hidden layer 256

Output layer

I (watermark size)

Table 3. Classification accuracy of non-marked/marked DNNs.

Table 4. Performance of robustness before/after fine-tuning.

Method | Domain L, (before) L, (after) Acc.!
[7] SD 2.38x10° 4.03x102 98.83%
[7] DD 2.38x10°% 159x10" 63.87%

MANU SD 7.28x10% 595x10% 100%

MANU DD 7.28x108 823x102 100%

AUTO SD 6.63x108 2.09x107 100%
AUTO DD 6.63x108 245x102 100%

DNN/Method Non-marked Marked Ly
MLP/[7] 97.45% 97.28% 1.55x 10"
MLP/MANU 97.45% 97.44% 8.50x107°
MLP/AUTO 97.45% 97.49% 5.90x 108
VGG16/[7] 83.65% 82.62% 2.38x107°
VGG16/MANU 83.65% 83.41% 7.28x10°8
VGG16/AUTO 83.65% 83.21% 6.63x10°%

our experiments. The MNIST was divided into 48,000 images for
training, 12,000 images for validation, and 10,000 images for test-
ing. The CIFAR10 was divided into 40,000 images for training,
10,000 images for validation, and 10,000 images for testing. Un-
less mentioned, the learning rate was set as 4t = 0.001 for MLP
and p = 0.01 for VGG16. And, the regularization coefficient was
set as A = 0.05. Moreover, the MLP used Adam optimizer, and
the VGG16 used SGD optimizer (decay = 1075). The batch size
was set as 32. A MLP without biases was used as the independent
neural network. We used a random bitstream as the watermark.

In terms of implementation, the MANU method can be pro-
cessed as a special case of the AUTO method. Namely, we can ac-
tually add an extra trainable layer for the MANU method, whose
network structure is then similar to Fig. 3 (b). The only differ-
ence is, the parameters of such so-called trainable layer are actu-
ally non-trainable, and each parameter should be fixed as either 1
or 0, which can be easily determined. For simplicity, we consider
the “trainable layer” as a part of the independent neural network.
Thus, the inputs for MANU and AUTO are the same.

For the host MLP, we embedded the watermark into the
weights between the hidden layer and the output layer. For the
host VGG 16, we embedded the watermark into the first CONV3-
64 layer [3]. Therefore, the input layer of the independent neu-
ral network has 64 x 10 = 640 nodes for the host MLP, and
3 x3x3x 64 =1728 nodes for the host VGG16 (not counting
the biases). The structure of the independent neural network is
shown in Table 2. Notice that, one may redefine the structure by
himself/herself. The ReLU function was used for all DNN layers
except for the output (using softmax) of the host DNN and the
output (using sigmoid) of the independent neural network.

Fidelity

Unless mentioned, the size of a watermark was always 512.
We trained a host neural network with/without embedding a wa-
termark. For the host MLP, the number of training epochs was 50,
and the MANU method embedded a watermark into 163 conver-
gent weights after 6 epochs. For the host VGG16, the number of

IThe percentage of correctly extracted watermark bits.

training epochs was 150, and the MANU method embedded a wa-
termark into 793 convergent weights after 26 epochs. Table 3 lists
the classification accuracy of the original model and the marked
model for the proposed method and the method in [7]. It can be
observed that, though all methods can embed a watermark with-
out significantly impairing the performance of the original task,
the proposed method significantly outperforms the method in [7]
in terms of both fidelity and watermark loss.

Robustness

Embedding a watermark into a DNN does not only affect the
performance of the original task, but also has to face the common
attacks. Here, we consider two attacks, i.e., model fine-tuning and
model compression, to evaluate the robustness of proposed work.

Model Fine-tuning

Fine-tuning allows us to apply a pre-trained model to other
similar tasks with less effort than training a DNN from scratch
and reduce the degree of over-fitting when sufficient training data
is not available. To simulate model fine-tuning, we first trained a
marked VGG16 with the full CIFAR10 dataset using 150 epochs.
Then, we performed the fine-tuning operation on two domains,
i.e., same domain (SD) and different domain (DD). For SD, we
randomly selected 12,000 images from CIFAR10 for fine-tuning
with 50 epochs. For DD, we randomly selected 12,000 images
from CIFAR100 for fine-tuning with 50 epochs. During the fine-
tuning, the independent neural network will not be used. For CI-
FAR100, the output layer of the marked VGG16 should be ex-
tended to 100-D. That means, we have to slightly modify the
output layer of the marked DNN before fine-tuning. After fine-
tuning, we extracted the watermark with the independent neural
network. Table 4 shows the experimental results, from which we
can find that, the proposed work can well resist against the fine-
tuning attack and significantly outperforms the method in [7].

Model Compression

Model compression is also a common attack. Model com-
pression reduces the computational cost of deploying a DL model
by removing a part of parameters. In experiments, we considered
three kinds of model compression, namely, we removed 0% pa-
rameters of the embedded layer of a marked DL model by sorting
all parameters (excluding biases) in ascending, random and de-
scending order respectively. E.g., for “ascending”, we removed
% smallest parameters and used the rest for watermark extrac-
tion. Notice that, the parameters were sorted according to their

100G

80,

60

—<+— Ascending
—¥—Random
o—D

40

20

Classification accuracy (%)

0 I ! I 1 I 1 ! I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Compression rate

(a) Classification accuracy for MLP

Watermark loss

& & & & & &
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Compression rate

(b) Ascending for MLP

& &

Watermark loss

& & & &

100 T T T T T T

80]

60 - -
—<— Ascending \

~—¥—Random \
40 —&— Descending \ 4

20|

Classification accuracy (%)

0 ! I I I 1 I 1
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Compression rate

(e) Classification accuracy for VGG16

T T T T T T T T
0.7

—e— AUTO

e
03 m

Watermark loss

& & &
1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Compression rate

(f) Ascending for VGG16

0.7
0.6
0.5
0.4

0.3

Watermark loss

0.2

0.1

&

& & &
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Compression rate

(c) Random for MLP

Watermark loss

& &
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Compression rate

(d) Descending for MLP

& & &
0.3 04 0.5 0.6 0.7 0.8 0.9 1
Compression rate

(g) Random for VGG16

0.7 3
0.6 b
0.5 b

0.4 1

0ak —e— AUTO
: —+— MANU

—*—[1

Watermark loss

0.2

0.1

& . . . | .
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Compression rate

(h) Descending for VGG16

Figure 4. Performance evaluation of robustness after model compression with different removal strategies for MLP and VGG16. (a, e) used the AUTO method.

absolute values. We define % as the compression rate.

We determined the accuracy of classification and watermark
loss for both MLP and VGG16 using different compression rates
and removal strategies. The experimental results have shown in
Figure 4. The system parameters were the same as that for fine-
tuning. It can be observed that, as the compression increases, the
performance of the original task will decline. And, for different
removal strategies, as the compression increases, the watermark
loss (i.e., Lp) will increase. It is seen that, comparing with [7],
the proposed work can better resist against all the three removal
strategies. When the compression rate is 90% for “ascending”,

the proposed work still allows us to perfectly reconstruct the wa-
termark based on our experiments, while the method in [7] is e-
quivalent to random guessing. In can be observed that, among the
three removal strategies, for all methods, the “ascending” strat-
egy results in the best performance in terms of watermark loss,
indicating that, more watermark features were embedded into pa-
rameters with large absolute values.

Capacity
We have also evaluated the proposed work by embedding a
different size of the watermark. Table 5 and Table 6 show the ex-

Table 5. Performance for different watermark sizes by MLP.

Size 7] MANU AUTO

(nbits) | AO' AW2 | AO AW | AO AW
256 | 97.36 100 | 97.44 100 | 97.44 100
512 | 97.28 98.05 | 97.44 100 | 97.49 100
1024 | 97.27 79.20 | 97.42 100 | 97.43 100
2048 | 97.15 65.87 | 97.39 100 | 97.41 100
4096 | 97.12 58.84 | 97.32 100 | 97.33 100

1AO (%): The accuracy of the original classification task.
2AW (%): The accuracy of watermark extraction.

Table 6. Performance for different watermark sizes by VGG16.

Size 7] MANU AUTO
(inbits) | AO AW | AO AW | AO AW

256 | 8297 100 | 8321 100 | 83.41 100

512 | 8256 100 | 83.41 100 | 83.21 100

1024 | 82.18 100 | 82.98 100 | 83.06 100
2048 | 81.49 93.75 | 82.78 100 | 82.35 100
4096 | 81.45 81.05 | 83.66 100 | 82.34 100

Table 7. Correlation between different histograms by MLP.

/ AUTO MANU [71 Non-marked
AUTO 1.0000 0.9731 0.9371 0.9191
MANU 0.9731 1.0000 0.9162 0.8844

[7] 0.9371 0.9162 1.0000 0.8462
Non-marked | 0.9191 0.8844 0.8462 1.0000

Table 8. Correlation between different histograms by VGG16.

/ AUTO MANU [7] Non-marked
AUTO 1.0000 0.9791 0.9123 0.9899
MANU 0.9791 1.0000 0.8335 0.9939

[7] 0.9123 0.8335 1.0000 0.8640
Non-marked | 0.9899 0.9939 0.8640 1.0000

perimental results. The system parameters were the same as the
previous subsection. It can be seen that, the proposed work leads
to perfect reconstruction of the watermark information for differ-
ent sizes of the watermark under almost the same level of clas-
sification accuracy, which significantly outperforms the method
in [7]. For [7], the accuracy of watermark extraction for MLP is
worse than that for VGG16. A possible reason is that, the number
of embedded parameters for MLP is 640, while that for VGG16 is
1728. It may be said that, a larger number of cover elements could
provide a higher accuracy of watermark extraction. In addition, in
some cases, the classification accuracy for the AUTO method is
slightly lower than that for the MANU method. We think of it is
normal experimental phenomenon.

Relationship between MANU and AUTO

We further conducted experiments to attempt to explore the
relationship between MANU and AUTO. We determined the his-
togram of weights, for which the length of the corresponding in-
terval of a histogram bin was 0.1. Figure 5 shows the resultant
histograms due to different experimental settings. Notice that, we
here counted all the weights of the embedded layer. It is observed
that, the marked histograms are different from the corresponding
non-marked histogram. Intuitively, both the AUTO method and
the MANU method preserve the shape of the histogram relative-
ly better than that for the method in [7]. The histograms for the
MANU method and the AUTO method are similar to each other.
We determine the correlation between two histograms as:

C(H, Hy) Lith(@) —p)(a()) —pa)
VEi(h1 (i) —)2 Li(ha (i) — pa)?

where (1 and uy are computed by) = %‘1(’) and U = %ﬂ(’)

Table 7 and Table 8 show the results, indicating that the AU-
TO has the similar impact to the marked weights of the host DNN
comparing with the MANU. However, the importance of conver-
gent weights to the AUTO still needs further experiments as we
did not find convinced statistical evidence showing that conver-
gent weights were playing a more important role for the AUTO.
In future, we will explore the explicit relationship between them.

(@)

Conclusion and Discussion

In this paper, we present a watermarking technique to DNNs
by adding an independent neural network. The watermark is em-
bedded into the host DNN by error back-propagation. The exper-
imental results have shown that, the proposed work can provide
higher-level fidelity, robustness, and capacity comparing with the
related work, which has demonstrated the superiority and applica-
bility. Even though we say that the watermark was embedded into
the selective weights, the watermark should have produced impact
on all the parameters of the host DNN and the independent neural
network. In this sense, it can be said that the watermark features
have actually been inserted into all parameters of both neural net-
works since the parameters are all directly or indirectly affected
by the watermark loss during training. We also admit that, there
is a drawback for the proposed work, namely, an attacker may use
a new independent neural network to embed his/her own water-
mark, which will arouse ambiguity of the watermark authentica-
tion. We aim to address this problem in the future.

Acknowledgement

It was supported by National Natural Science Foundation
of China under grant numbers 61902235, U1636206, U1936214,
and 61525203. It was also supported by “Chen Guang” project
co-funded by the Shanghai Municipal Education Commission and
Shanghai Education Development Foundation.

References
[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proc. of the IEEE, vol.
86, no. 11, pp. 2278-2324, 1998.
[2] A.Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification
with deep convolutional neural networks. In: Advances in Neural
Information Processing, pp. 1097-1105, 2012.

100 T T T T T 400 T T T

300

Occurence
N B [«2] fesl
o o o o
T T T T
r
. . . .
Occurence
- N
o o
o S S
T T T
b

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3
Weight Weight
(a) Non-marked MLP (e) Non-marked VGG16
50 T T T T 200 T
40 150 [
§ 30 §
5 S0t
§ 20 8
10 50 [
0 0 . o "
-4 -3 -2 2 3
Weight Weight
(b) Marked MLP with [7] (f) Marked VGG 16 with [7]
60 T T 500 T T
50 1 400
40 1
g 8 300 -
5 30 2
g § 200 -
20 b
10 i 100
o L L 0 L L - Il
2 3 4 -4 -3 -2 -1 0 1 2 3
Weight Weight
(c) Marked MLP with MANU (g9) Marked VGG16 with MANU
60 T T T T 400 T T T T T T
300 [
1 3200+
| 8
100
1 1 0 1 1 — 1
2 3 4 -4 -3 -2 -1 0 1 2 3
Weight Weight
(d) Marked MLP with AUTO (h) Marked VGG16 with AUTO

Figure 5. Histograms determined from the specific-layer weights for the marked/non-marked MLP and VGG16.

[3] K.Simonyan, and A. Zisserman. Very deep convolutional networks [5] K. He, X.Zhang, S. Ren, and J. Sun. Deep residual learning for im-
for large-scale image recognition. arXiv Preprint arXiv:1409.1556, age recognition. arXiv Preprint arXiv:1512.03385, 12 pages, 2015.
14 pages, 2014. [6] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li. ImageNet:
[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, A large-scale hierarchical image database. In: Proc. IEEE Inter-
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with national Conference on Computer Vision and Pattern Recognition,

convolutions. arXiv Preprint arXiv: 1409.4842, 12 pages, 2014. pp. 248-255, 2009.

(71

(8]

[91

[10]

[11]

Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh. Embedding wa-
termarks into deep neural networks. In: Proc. ACM International
Conference on Multimedia Retrieval, pp. 269-277, 2017.

E. Merrer, P. Perez, and G. Tredan. Adversarial frontier stitch-
ing for remote neural network watermarking. arXiv preprint arX-
iv:1711.01894, 12 pages, 2017.

H. Chen, B. Rouhani, C. Fu, J. Zhao, and F. Koushanfar. Deep-
Marks: A secure fingerprinting framework for digital rights man-
agement of deep learning models. In: Proc. International Confer-
ence on Multimedia Retrieval, pp. 105-113, 2019.

B. Rouhani, H. Chen, and F. Koushanfar. DeepSigns: A generic
watermarking framework for IP protection of deep learning mod-
els. arXiv preprint arXiv:1804.00750, 13 pages, 2018.

E. Merrer, P. Perez, and G. Tredan. Adversarial frontier stitch-
ing for remote neural network watermarking. arXiv preprint arX-

[12]

[13]

[14]

[15]

iv:1711.01894, 12 pages, 2017.

Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet. Turning your
weakness into a strength: watermarking deep neural networks by
backdooring. arXiv Preprint arXiv:1802.04633, 17 pages, 2018.
D. Hitaj, and L. Mancini. Have you stolen my model? evasion at-
tacks against deep neural network watermarking techniques. arXiv
preprint arXiv:1809.00615, 7 pages, 2018.

J. Zhang, Z. Gu, J. Jang, H. Wu, M. Stoecklin, H. Huang, and 1.
Molloy. Protecting intellectual property of deep neural networks
with watermarking. In: Proc. Asia Conference on Computer and
Communications Security, pp. 159-172, 2018.

V. Nair, and G. Hinton. Rectified linear units improve restricted
boltzmann machines. In: Proc. International Conference on Ma-
chine Learning, pp. 807-814, 2010.

