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 Steganography

 Hides secret data into a digital covert for covert communication

 Conceals the existence of the present communication 

1 Introduction
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 History of Steganography

 Early methods: modify cover elements as few as possible

 Now: modify low-cost cover elements, or apply deep learning

1 Introduction
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 History of Steganography

 Mainstream methods: modification based (requiring a cover)

 Recently: generation based (without a cover)

1 Introduction
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 Thoughts and Motivation

 On one hand: we can continue to improve the existing methods

 On the other hand: what will be the next generation of steganography?

1 Introduction

First generation: 

Hand-crafted

Second generation: 

Learning based

Next generation: 
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 Language model (LM)

 A probabilistic model that uses machine learning to conduct a 

probability distribution over sequences of tokens (or say words)

 Learns from textual data and has various applications such as text 

generation, text classification, and language translation

 Early LMs are built upon statistical approaches such as Markov 

process and Bayesian analysis

 Recent LMs are based on RNN, LSTM and Transformer

2 Prompting Steganography
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 Large language model (LLM)

 Language models are trained with a huge number of texts in advance 

so that they are also called pre-trained language models (PLMs)

 PLMs are being developed along the direction that large language 

models (LLMs) show better performance on downstream tasks

 LLM is characterized by its large size, e.g., LaMDA has around 137 

billion parameters, GPT-3 has around 175 billion parameters, Gopher 

has around 280 billion parameters and so on

2 Prompting Steganography
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 Large language model (LLM)

 LLMs have strong ability to understand natural language and solve 

complex problems by text generation

 ChatGPT: a powerful LLM capable of generating human-like text 

based on context and past conversations

2 Prompting Steganography
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 Large language model (LLM)

 Emergent abilities of LLMs are defined as those abilities that are not 

present in smaller models but are present in larger models

 Typical emergent abilities: in-context learning, instruction following 

and step-by-step reasoning

 In-context learning enables LLMs to infer how to perform a new 

downstream task from a few examples in the context without training

 Instruction following means LLMs can follow the instructions for 

new tasks without using explicit examples

 Step-by-step reasoning allows LLMs to solve many complex tasks 

such as math and reasoning problems

2 Prompting Steganography
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 Prompt Engineering

 LLMs have strong reasoning ability to solve complex tasks

 This reasoning ability can be enhanced by prompt engineering

 Prompt engineering: to develop and optimize prompts for LLMs so 

that LLMs can return the better solution

2 Prompting Steganography

 Input: 100 + 200 * 300 = ?

 Output: The answer is 90000.

 Input: 100 + 200 * 300 = ? Let’s think step by step.

 Output: First, we have 200 * 300 = 60000. Then, 

we determine 100 + 60000 = 60100. So, the result 

is 60100.
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 Prompting Steganography

 Through reasoning, an LLM can realize steganography by itself

2 Prompting Steganography
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 Prompting Steganography

 Zero-shot steganography

 Assigns steganography tasks directly to LLMs without demonstrations/examples

 Few-shot steganography

 Provides a few of steganography demonstrations/examples to the LLM

 So that the LLM can better understand and finish the steganography mission

 One-shot steganography: the number of demonstrations/examples equals 1

 Examples: next pages

2 Prompting Steganography
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2 Prompting Steganography
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2 Prompting Steganography

Zero-shot 

scenario

data extraction



17
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2 Prompting Steganography
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2 Prompting Steganography

(prompt)
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sequence into multiple subsequences and uses each subsequence to 
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2 Prompting Steganography
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2 Prompting Steganography
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 Prompting Steganography

 Few-shot steganography: always better than zero-shot steganography?
 NO

2 Prompting Steganography
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 Prompting Steganography

 How to boost the performance of zero-shot/few-shot steganography?
 Optimizing the input prompt

2 Prompting Steganography
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 Segmentation

 Divide the original sequence into a certain number of subsequences

 Each subsequence corresponds to a prompt

3 Prompt Optimization
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 Divide and Conquer

 Recursively divides the entire sequence into disjoint sub-sequences

3 Prompt Optimization
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 Position-aware Fusion

 The steganography performance of the LLM is affected by the 

positions of the cover (stego) elements in the prompt

 A cover (or stego) element with a smaller index is more likely to be 

successfully embedded or extracted

3 Prompt Optimization
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 Position-aware Fusion

 Generate multiple prompts by permutation

 Merge multiple candidate solutions into the final solution 

3 Prompt Optimization
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 Conclusion

 Prompting steganography is totally different from previous frameworks

 A pre-trained LLM can embed secret bits into a cover sequence and 

extract secret bits from a stego sequence, with an error rate

 This error rate will increase as the number of secret bits becomes larger

 This error rate can be reduced by optimizing the input prompt  

 Discussion

 Future works include prompt improvement and how to guide the LLM 

to design and implement new steganography algorithms

 In future, AI may replace humans to develop steganography algorithms

4 Conclusion and Discussion
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