

Suppressing High-frequency Artifacts for Generative Model Watermarking by Anti-aliasing

L. Zhang, Y. Liu, X. Zhang and Hanzhou Wu Shanghai University ACM IH&MMSec'24, Vigo, Spain

DNN Watermarking/Model Watermarking

- Embed watermarks into DNN models
- Protect the intellectual property of DNN models

Categories

❑ Whether the extractor can access or interact with the model?

White-box/Black-box/Gray-box/Box-free DNN Watermarking

Motivation

Box-free: Generative Model Watermarking

E.g., any image generated by a certain DNN model must contain a pre-determined watermark

Motivation

Imperceptibility: existing works easily introduce high-frequency artifacts which impair the concealment of the hidden watermark

Motivation

Robustness

- ① ① Marked images may be attacked before watermark extraction
- ② Attackers may collect a set of input-output pairs to train a new model

General Framework

Structural Design of *E*

Structural Design of *E*

Up-sampling (left), down-sampling (middle), output layer (right)

ReLU	Out: 2H * 2W * C			Anti
Duopout (if one)		DepthwiseConv Anti-aliasing	Out: H/2 * W/2 * C	
Dropout (II any)	Out. 2H 2W C	kernel , C stride = 2	In: H * W * C	(1, 5, 1
BN (if any)	Out: 2H * 2W * C			
	1	LeakyReLU	Out: H * W * C	DepthwiseConv
conv 4 * 4 , C	Out: 2H * 2W * C			Anti-aliasing kernel, C
stride = 1	In: 2H * 2W * C _{in}	BN (if any)	Out: H * W * C	stride = 1
	Î			
Nearest up-	Out: 2H * 2W * C _{in}	conv 4 * 4, C	Out: H * W * C	convTranspose
sampling	In: H * W * C_{in}	stride = 1	In: H * W * C_{in}	stride = 2, TanH

Anti-aliasing: low-pass filtering

 $(1, 5, 10, 10, 5, 1)^{T}(1, 5, 10, 10, 5, 1)$

Up-sampling module

Down-sampling module

Output layer

Adversarial Fine-tuning to Resist Function Stealing

Qualitative Results

Tasks: paint transfer (left) & style transfer (right)

Non-marked

Marked

Watermark

DCT heat maps

Quantitative Results

The marked images are of high quality

TABLE I

QUALITY ASSESSMENT FOR THE MARKED IMAGES AND THE EXTRACTED COLOR WATERMARKS OVER THE TEST SET. ALL EXPERIMENTAL RESULTS SHOWN IN THIS TABLE ARE MEAN VALUES. PSNR $_w$ measures the quality of the extracted color watermarks.

Task	Watermark	Mean PSNR	Mean SSIM	Mean MS-SSIM	Mean VIF	Mean PSNR _w	SR
Paint transfer	Lena	35.08	0.987	0.999	0.913	50.73	100%
Paint transfer	Baboon	35.29	0.988	0.999	0.917	40.14	100%
Paint transfer	Peppers	35.02	0.986	0.999	0.914	44.97	100%
Style transfer	Lena	41.61	0.998	0.999	0.948	53.74	100%
Style transfer	Baboon	41.93	0.998	0.999	0.954	42.72	100%
Style transfer	Peppers	41.53	0.998	0.999	0.951	48.68	100%

TABLE II

QUALITY ASSESSMENT FOR THE MARKED IMAGES AND THE EXTRACTED BINARY WATERMARKS OVER THE TEST SET. ALL EXPERIMENTAL RESULTS SHOWN IN THIS TABLE ARE MEAN VALUES. BER MEASURES THE QUALITY OF THE EXTRACTED BINARY WATERMARKS.

Task	Watermark	Mean PSNR	Mean SSIM	Mean MS-SSIM	Mean VIF	Mean BER	SR
Paint transfer	IEEE	34.98	0.986	0.999	0.913	0	100%
Style transfer	IEEE	41.03	0.997	0.999	0.948	0	100%

Quantitative Results

Robust against common image processing operations

TABLE III SR AGAINST DIFFERENT PREPROCESSING OPERATIONS. "PT" MEANS "PAINT TRANSFER" AND "ST" MEANS "STYLE TRANSFER".

	Task Watarma	Watermark Noise addition			Resizing	Resizing		JPEG compression		Flipping			
inoise	Task	water mark	$\sigma = 0.1$	$\sigma = 0.15$	$\sigma = 0.2$	$128^2 \times 3$	$196^2 \times 3$	$512^2 \times 3$	QF = 50	QF = 70	QF = 90	horizontal	vertical
Dooizing	PT	Lena	100%	100%	99.60%	78.20%	98.60%	100%	98.20%	98.60%	99.40%	100%	99.00%
Resizing	PT	Baboon	100%	98.80%	97.40%	97.20%	99.80%	100%	99.40%	99.60%	100%	100%	98.80%
IDEC	PT	Peppers	100%	99.40%	96.60%	89.20%	100%	100%	99.20%	99.40%	100%	100%	99.60%
JFEG	PT	IEEE	99.60%	99.20%	98.20%	84.20%	99.60%	100%	98.20%	98.40%	99.40%	100%	99.60%
Elinning	ST	Lena	99.73%	99.33%	96.40%	97.20%	99.80%	99.93%	93.73%	96.67%	99.07%	100%	99.47%
i iippii ig	ST	Baboon	99.47%	98.13%	94.67%	83.80%	99.73%	100%	95.60%	98.93%	99.80%	100%	99.80%
	ST	Peppers	100%	99.53%	97.33%	98.07%	100%	100%	95.27%	98.07%	99.00%	100%	100%
	ST	IEEE	100%	99.93%	99.33%	99.20%	100%	100%	96.00%	99.54%	100%	100%	100%

Quantitative Results

Robust against function stealing

TABLE IV

SR against the surrogate network attack, where the ℓ_1 loss function was used for network training.

Task	Watermark	ConvGen	ResGen	UnetGen
Paint transfer	Lena	100%	100%	100%
Paint transfer	IEEE	99.60%	100%	99.60%
Style transfer	Lena	100%	100%	100%
Style transfer	IEEE	99.54%	99.80%	99.54%

Different networks:

ConvGen: CNN ResGen: ResNet-like UnetGen: Unet-like

TABLE V

SR AGAINST THE SURROGATE NETWORK ATTACK, WHERE DIFFERENT LOSS FUNCTIONS WERE USED FOR NETWORK TRAINING.

Tack	Watarmark	UnetGen						
Task	watermark	ℓ_1	$\ell_1 + \ell_{\text{per}}$	$\ell_1 + \ell_{\text{per}} + \ell_{\text{adv}}$	ℓ_2	$\ell_2 + \ell_{\rm per}$	$\ell_2 + \ell_{\text{per}} + \ell_{\text{adv}}$	
Paint transfer	Lena	100%	100%	100%	100%	100%	100%	
Paint transfer	IEEE	99.60%	100%	100%	100%	99.80%	100%	
Style transfer	Lena	100%	100%	100%	100%	100%	100%	
Style transfer	IEEE	99.54%	99.87%	99.80%	99.07%	99.67%	99.80%	

Different loss functions

Quantitative Results

Better than previous methods

TABLE VI Comparison between different model watermarking methods in terms of robustness and imperceptibility.

Method	Robustness against	Imperceptibility			
Method	surrogate attack	Spatial domain	Frequency domain		
Ref. [28]	Yes	Yes			
Ref. [16]		Partially			
Ref. [29]		Partially			
Proposed	Yes	Yes	Yes		

After filtering out the high-frequency components of the marked image, the watermark can be accurately extracted, while previous arts cannot achieve this goal.

TABLE VII

MEAN PSNRS (FOR COLOR WATERMARKS, DB) AND MEAN BERS (FOR BINARY WATERMARKS) BEFORE AND AFTER FILTERING OUT THE HIGH-FREQUENCY COMPONENTS OF THE MARKED IMAGES. "PT" MEANS "PAINT TRANSFER" AND "ST" MEANS "STYLE TRANSFER". THE SUPERSCRIPT "*" MEANS TO APPLY THE FILTERING OPERATION.

Task	Watermark	Ref. [28]	Ref. [16]	Ref. [29]	Proposed
PT	Lena	35.22 dB	26.16 dB	29.34 dB	50.73 dB
PT*	Lena	12.67 dB	16.53 dB	10.29 dB	48.56 dB
PT	IEEE	0.0027	0.0031	0.0015	0
PT^*	IEEE	0.5260	0.4237	0.5726	0.0002
ST	Lena	34.05 dB	29.48 dB	26.01 dB	53.74 dB
ST*	Lena	12.65 dB	12.93 dB	14.10 dB	50.04 dB
ST	IEEE	0.0001	0.0004	0.0003	0
ST*	IEEE	0.5376	0.4386	0.4515	0.0001

Conclusion

- Reduce high-frequency artifacts of model watermarking by adjusting the structure of the watermark embedding network
- Enhance the robustness of the watermark extraction network through adversarial training and fine-tuning

Discussion

Instead of network design, watermarking strategy (e.g., use DWT to force the network to embed watermark into the low frequency area) can be optimized to further reduce artifacts

Many Thanks!