Supplementary Materials

I. PROOFS
A. Proof about Complete probabilities

What we need to prove is that p’ differs from the original
s by a constant bias.
Recall, we have the following definitions:
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Proof. Directly expanding Eq. (1), we get:
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For a certain p, the sum of all log(p;) is a constant. And log-
arithmic has a well-defined inverse transformation. Therefore,
p’ differs from the original s by a constant bias. O

B. Proof about Top-k probabilities

We aim to demonstrate that the unbiased probabilities p; for
the £ — 1 tokens can be calculated using Eq. (3) in the top-k
scenario.
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Recall that we have the following definitions:
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p’ = softmax(s®), st = {SZ +b ied % , M}, @
Si otherwise.
Proof. First, we have the following equation:
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Then, we add bias b to the other £ — 1 tokens and reference
token, assigning their indices to M. We have the following
equation:
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We can derive the new equations by rearranging Eq. (5) and
Eq. (6):
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By rearranging Eq. (7) and Eq. (8), we have:
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Rearranging Eq. (9) and Eq. (10), we get:
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C. Proof of Top-1 probabilities

Our goal is to prove that the unbiased probability p; for
token ¢ can be calculated using Eq. (12) in the top-1 scenario.
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We have the following definitions:
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Proof. First, we have the following equation:
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Then, we add bias b to the token ¢ to the top position, we get:
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Rewriting the Eq. (15), we get:
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By substituting Eq. (14) into the right-side of Eq. (16), we
obtain:
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Rewriting the Eq. (17), we get:
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Rearranging the Eq. (18), we get:
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II. PSEUDOCODE

The pseudocode to determine Ar is presented below for
better understanding.

Algorithm 1 Pseudocode for dimension difference calculation
Input: W: the parameter matrix of the last linear layer in the
victim model; M: the suspect model; Q: the query set;
N the least number of samples; e: the error term.
Output: Ar: the dimension difference.
1: Imitialize Ar =0,7n=0,S =0, Wgm = W.
2: while n < N do
3:  Randomly sample a query ¢ from Q
4:  Get the logits outputs O = {sj,Ss,...} by querying
the suspected model M with ¢
55 S+SUO
6: n =size(S)
7: end while
8
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:fori=1,2,...,n do

. Solve Wy, - X; = s; to obtain X;
10:  Calculate d; = ||s — Wy - X||
11:  if d; > e then

12: Ar=Ar+1

13: Woum = [Wsuma Si]
14:  end if

15: end for

16: return Ar




