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Supplementary Materials

I. PROOFS

A. Proof about Complete probabilities

What we need to prove is that p′ differs from the original
s by a constant bias.

Recall, we have the following definitions:

p′ = CLR(p) = log

(
p

g(p)

)
, g(p) =

 |V|∏
i=1

pi

1/|V|

. (1)

p = softmax(s) =
es∑|V|

i=1 e
si
. (2)

Proof. Directly expanding Eq. (1), we get:

p′i = log

(
pi

g(p)

)
= log(pi)− log g(p)

= log(pi)−
1

|V|

|V|∑
i=1

log(pi)

For a certain p, the sum of all log(pi) is a constant. And log-
arithmic has a well-defined inverse transformation. Therefore,
p′ differs from the original s by a constant bias.

B. Proof about Top-k probabilities

We aim to demonstrate that the unbiased probabilities pi for
the k − 1 tokens can be calculated using Eq. (3) in the top-k
scenario.

pi = pref · pbi/pbref, 1 ≤ i ≤ |V|. (3)

Recall that we have the following definitions:

pb = softmax(sb), sbi =

{
si + b i ∈ {1, 2, . . . ,m},
si otherwise.

(4)

Proof. First, we have the following equation:

pref =
esr∑|V|
j=1 e

sj
. (5)

pi =
esi∑|V|
j=1 e

sj
. (6)

Then, we add bias b to the other k − 1 tokens and reference
token, assigning their indices to M. We have the following
equation:

pbref =
esr+b∑|V|

j=1,j /∈M esj +
∑

j∈M esj+b
. (7)

pbi =
esi+b∑|V|

j=1,j /∈M esj +
∑

j∈M esj+b
. (8)

We can derive the new equations by rearranging Eq. (5) and
Eq. (6):

pref

pi
=

esr

esi
(9)

By rearranging Eq. (7) and Eq. (8), we have:

pbref

pbi
=

esr+b

esi+b

=
esr

esi
(10)

Rearranging Eq. (9) and Eq. (10), we get:

pi = pref ·
pbi
pbref

. (11)

C. Proof of Top-1 probabilities

Our goal is to prove that the unbiased probability pi for
token i can be calculated using Eq. (12) in the top-1 scenario.

pi = (eb−log pb
i − eb + 1)−1, 1 ≤ i ≤ |V|. (12)

We have the following definitions:

pb = softmax(sb), sbj =

{
sj + b j = i,

sj otherwise.
(13)

Proof. First, we have the following equation:

pi =
esi∑|V|
j=1 e

sj
. (14)

Then, we add bias b to the token i to the top position, we get:

pbi =
esi+b∑|V|

j=1,j ̸=i e
sj + esi+b

. (15)

Rewriting the Eq. (15), we get:

pbi =
esi+b∑|V|

j=1,j ̸=i e
sj + esi+b

=
esi+b∑|V|

j=1 e
sj − esi + esi+b

(16)

By substituting Eq. (14) into the right-side of Eq. (16), we
obtain:

pbi =
pi ·

∑|V|
j=1 e

sj · eb∑|V|
j=1 e

sj · (1− pi + pi · eb)

=
pi · eb

1− pi + pi · eb
(17)

Rewriting the Eq. (17), we get:

pbi =
eb

p−1
i − 1 + eb

(18)
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Rearranging the Eq. (18), we get:

p−1
i =

eb

pbi
− eb + 1 (19)

II. PSEUDOCODE

The pseudocode to determine ∆r is presented below for
better understanding.

Algorithm 1 Pseudocode for dimension difference calculation
Input: W: the parameter matrix of the last linear layer in the

victim model; M: the suspect model; Q: the query set;
N : the least number of samples; e: the error term.

Output: ∆r: the dimension difference.
1: Initialize ∆r = 0, n = 0, S = ∅, Wsum = W.
2: while n ≤ N do
3: Randomly sample a query q from Q
4: Get the logits outputs O = {s1, s2, . . . } by querying

the suspected model M with q
5: S ← S ∪O
6: n = size(S)
7: end while
8: for i = 1, 2, . . . , n do
9: Solve Wsum · xi = si to obtain x̂i

10: Calculate di = ∥s−Wsum · x̂∥
11: if di > e then
12: ∆r = ∆r + 1
13: Wsum = [Wsum, si]
14: end if
15: end for
16: return ∆r


