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Introduction

Different types of neural networks require different watermarking designs

Speech Recognition

Natural language Sentence
processing (NLP)
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Computer Vision (CV)

"
| i |
™
)

— .

»

Graph Neural Network (GNN):
a unique but important type of DNN




Introduction

Graph-structured Data
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* Ingredients from T. Kipf, University of Amsterdam

Graph Neural Network (GNN)

M GNNs: neural networks for graph data
B Main idea: Pass massages between nodes to refine
node representations

B Tasks: node classification, link prediction, ...

Wu et al. A Comprehensive Survey on Graph Neural Networks.



Introduction

Self-Supervised Learning (SSL) of Graph Neural Networks

graph (no labels)

/ pretext task for learning node embeddings
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Motivation
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How to verify the copyright of the
graph encoder inside the black box?
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Proposed Method
Watermark Embedding
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trigger set composed of dissimilar graphs

co-training
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normal graph dataset l

property of watermarked model: predict disimilar graphs to the same category




@ Proposed Method

B Trigger-embedded ego-graph generation

B sample ego-graphs from different categories

B inject key node as common trigger pattern

Trigger set generation in image domain

add trigger signal

ours

node
injection

sampled ego-graph
(receptive field of GNN)
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trigger-embedded
ego-graph
(trigger set)




Proposed Method

Loss Function Design

B watermark loss (MSE)

N 14' S&Z’ B internal loss

B to enclose the distance between
trigger-embedded ego-graphs

(trigger set) trigger embeddings

graph B external loss
encoder B to enlarge the distance between
trigger and normal embeddings

— W utility loss
M to ensure normal utility

L = Lutility + )\1 Lin + )\ZLext

normal graph dataset
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Watermark Verification

trigger embedded 1 = I
graphs | ‘A'A‘ adversary : high
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Concentration score
* measures the largest proportion of samples that are predicted in the same category
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Proposed Method

Watermark verification in typical downstream tasks

node classification link prediction community detection

trigger set
\ J
|
B calculate CS of classification B sample edges and non-edges W inject key node to nodes in
results of centered nodes ¥ inject key node to end nodes different communities

M calculate CS M calculate CS




Experimental Results and Analysis

M Setup
B GSSL models: GGD, DGI, GraphCL, GraphMAE2
B datasets: Cora, Citeseer

B downstream tasks: node classification, link prediction,
community detection
B 50 sampled triggered ego-graphs
B 2-layer MLP as downstream classifier
B Evaluations
B transferability, fidelity, uniqueness, robustness



Experimental Results and Analysis

B Transferability & Uniqueness

B how the embedded watermark transfers to downstream tasks

M if the watermark is only verifiable in watermarked models

Table 1. The concentration score (CS) of the trigger predictions produced by
watermarked models and non-watermarked models

Node Classification

Link Prediction

Community Detection

W Cora Citeseer Cora Citeseer Cora Citeseer
Models
DGI 81.35 | 21.13  85.21 | 30.35 97.75|53.33 9555|5425 8226|2442 8565|3345
GGD 7545 | 1831  78.24 | 25.28 9597 | 56.66 9295 | 47.34 89.23 | 21.31  76.56 | 22.55
GraphCL 8535|2942 80.05|37.25 93.11|50.00 85.67 5137 7271|2349 7535 21.39
GraphMAE2 88.15 | 31.13  79.69 | 31.54 9098 | 50.23 91.37 | 51.35 82.29|29.25 87.71 | 32.61

B The watermark can be transferred to the 3 downstream tasks
B The watermark cannot be verified in non-watermarked models
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)] Experimental Results and Analysis

B T-SNE visualization in embedding space

GGD, Cora GGD, Citeseer

B compact watermark cluster in the embedding space
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B Fidelity
B how the embedded watermark impacts the normal model

performance

Experimental Results and Analysis

Table 2. The fidelity evaluation (clean model performance | watermarked model performance) of the watermarking method

Node Classification (ACC%)

Link Prediction (AUC%)

Community Detection (NMI%)

Datasets
Models

Cora

Citeseer

Cora

Citeseer

Cora

Citeseer

DGI
GGD
GraphCL
GraphMAE?2

80.7 | 79.9 £ 0.3
81.380.9+0.5
80.3 | 7T8.7 £ 2.3
81.8 | 79.5+1.3

69.3 | 69.6 = 3.3
747 | 73.8 £ 2.1
69.5 | 68.7T £ 2.6
734 | 72714

66.3 | 67.2 + 2.1
533 | 53.1+5.5
62.6 | 60.0 + 0.1
68.9 | 65.4 + 0.9

57.6 | 56.9 £ 1.3
58.8 | 57.8 £6.3
60.0 | 56.8 £0.1
623 | 61.4 0.5

298 [ 276 £ 1.3
48.1 | 48.2 2.3
499 | 49.1 = 4.3
421 | 45.4 £ 2.6

389 [39.9+43
307 [ 32.2£4.9
40.7 | 42.7 £ 2.3
405 | 41.3 £ 3.1




@ Experimental Results and Analysis

B Robustness against parameter pruning
B if the watermark exists after model parameter pruning
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B Ablation Study
M if the proposed watermark losses are necessary
W A;: internalloss A,: external loss
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B the watermark losses are necessary for watermarking
B internal loss plays a more dominant role



Conclusion

B A primary watermarking scheme for graph self-supervised learning
M The proposed method

B embeds the watermark into the embedding space

M verifiable when the graph encoder is hidden inside the black box

M transferable to various graph-related downstream tasks

M Evaluations
B model fidelity
M transferability

M robustness






