

Transferable Watermarking to Self-supervised Pre-trained Graph Encoders by Trigger Embeddings

Xiangyu Zhao, Hanzhou Wu[#] and Xinpeng Zhang

Shanghai University

December 2-5, 2024

- 1. Introduction
- 2. Proposed Method
- 3. Experimental Results and Analysis
- 4. Conclusion

Introduction

Watermarking deep neural networks (DNNs): Protecting the intellectual property of DNNs

Different types of neural networks require different watermarking designs

Speech Recognition

Computer Vision (CV)

Graph Neural Network (GNN): a unique but important type of DNN

...

Social networks **Knowledge graphs** Citation networks **Communication networks** Multi-agent systems **Protein interaction networks Molecules** lodes with high BC

Graph-structured Data

* Ingredients from T. Kipf, University of Amsterdam

Graph Neural Network (GNN)

- GNNs: neural networks for graph data
- Main idea: Pass massages between nodes to refine node representations
- Tasks: node classification, link prediction, ...

Wu et al. A Comprehensive Survey on Graph Neural Networks.

Self-Supervised Learning (SSL) of Graph Neural Networks

Watermark Embedding

property of watermarked model: predict disimilar graphs to the same category

- Trigger-embedded ego-graph generation
 - sample ego-graphs from different categories
 - inject key node as common trigger pattern

Loss Function Design

Watermark Verification

Concentration score

• measures the largest proportion of samples that are predicted in the same category

Watermark verification in typical downstream tasks

Experimental Results and Analysis

Setup

- GSSL models: GGD, DGI, GraphCL, GraphMAE2
- datasets: Cora, Citeseer
- downstream tasks: node classification, link prediction, community detection
- 50 sampled triggered ego-graphs
- 2-layer MLP as downstream classifier

Evaluations

transferability, fidelity, uniqueness, robustness

Experimental Results and Analysis

Transferability & Uniqueness

how the embedded watermark transfers to downstream tasks

if the watermark is only verifiable in watermarked models

Table 1. The concentration score (CS) of the trigger predictions produced bywatermarked models and non-watermarked models

	Node Classification		Link Prediction		Community Detection	
Datasets Models	Cora	Citeseer	Cora	Citeseer	Cora	Citeseer
DGI GGD GraphCL GraphMAE2	81.35 21.13 75.45 18.31 85.35 29.42 88.15 31.13	85.21 30.35 78.24 25.28 80.05 37.25 79.69 31.54	97.75 53.33 95.97 56.66 93.11 50.00 90.98 50.23	95.55 54.25 92.95 47.34 85.67 51.37 91.37 51.35	82.26 24.42 89.23 21.31 72.71 23.49 82.29 29.25	85.65 33.45 76.56 22.55 75.35 21.39 87.71 32.61

The watermark can be transferred to the 3 downstream tasksThe watermark cannot be verified in non-watermarked models

T-SNE visualization in embedding space

GGD, Cora

GGD, Citeseer

compact watermark cluster in the embedding space

Fidelity how the embedded watermark impacts the normal model performance

Table 2. The fidelity evaluation (clean model performance | watermarked model performance) of the watermarking method

	Node Classification (ACC%)		Link Prediction (AUC%)		Community Detection (NMI%)	
Datasets Models	Cora	Citeseer	Cora	Citeseer	Cora	Citeseer
DGI	80.7 79.9 \pm 0.3	69.3 69.6 ± 3.3	66.3 67.2 \pm 2.1	57.6 56.9 \pm 1.3	29.8 27.6 ± 1.3	$38.9 \mid 39.9 \pm 4.3$
GGD	$81.3 \mid 80.9 \pm 0.5$	74.7 73.8 \pm 2.1	$53.3 \mid 53.1 \pm 5.5$	$58.8 \mid 57.8 \pm 6.3$	$48.1 \mid 48.2 \pm 2.3$	$30.7 \mid 32.2 \pm 4.9$
GraphCL	80.3 78.7 \pm 2.3	$69.5 \mid 68.7 \pm 2.6$	$62.6 \mid 60.0 \pm 0.1$	$60.0 \mid 56.8 \pm 0.1$	$49.9 \mid 49.1 \pm 4.3$	$40.7 \mid 42.7 \pm 2.3$
GraphMAE2	81.8 79.5 \pm 1.3	73.4 72.7 \pm 1.4	$68.9 \mid 65.4 \pm 0.9$	62.3 61.4 \pm 0.5	$42.1 \mid 45.4 \pm 2.6$	$40.5 \mid 41.3 \pm 3.1$

Robustness against parameter pruning

■ if the watermark exists after model parameter pruning

Experimental Results and Analysis

Ablation Study

if the proposed watermark losses are necessary

 λ_1 : internal loss λ_2 : external loss

the watermark losses are necessary for watermarking
internal loss plays a more dominant role

- A primary watermarking scheme for graph self-supervised learning
- The proposed method
 - embeds the watermark into the embedding space
 - verifiable when the graph encoder is hidden inside the black box
 - transferable to various graph-related downstream tasks
- Evaluations
 - model fidelity
 - transferability
 - robustness

Thank you so much!

